

Helms Research Farm Summary Report 2006

Table of	Contents
----------	----------

<u>Research Participants</u>
Introduction
Corn Breeding Wenwei Xu
Cotton Irrigation Management with SDI James P. Bordovsky, Joe Mustian and Andy Cranmer
Effect of SDI Design on Cotton Lint Yield James P. Bordovsky, Joe Mustian and Andy Cranmer
Evaluation of Visual vs. Beat Bucket Sampling for Pests and Beneficials in Cotton Greg Cronholm
<u>Replicated Transgenic Cotton Variety Demonstration Under LEPA Irrigation</u> Mark Kelley, Aaron Alexander, Randy Boman, Doug Nesmith, and James P. Bordovsky9
Large-plot Non-replicated Cotton Variety Comparison at Helms Farm Wayne Keeling, John Everitt, James P. Bordovsky, Doug Nesmith, and Scott Asher10
Comparison of Conventional and Conservation Tillage Systems for Cotton James P. Bordovsky, Chance McMillan, Doug Nesmith, Wayne Keeling, and John Everitt11
Cotton Response to Irrigation Level and Crop History James P. Bordovsky, Joe Mustian, and Doug Nesmith
Large-plot Non-replicated Corn Variety Comparison at Helms Farm Wayne Keeling, John Everitt, James P. Bordovsky, Doug Nesmith, and Scott Asher13
Cotton Variety Performance as Affected by Low-energy Precision Application (LEPA) Irrigation Levels Wayne Keeling, James P. Bordovsky, Randy Boman, and John Everitt
<u>Yield, Quality, Profitability and Drought Avoidance of Cotton Produced at Varying</u> Plant Densities
Craig Bednarz, James P. Bordovsky, Wayne Keeling, Randy Boman, Cory Mills, and John Everitt
Cotton Variety Performance as Affected by Subsurface Drip Irrigation (SDI) Levels at Helms Farm Wayne Keeling, James P. Bordovsky, Randy Boman, and John Everitt

Influence of Soil Nitrogen Level on Seasonal Activity of Cotton Arthropods with Drip Irrigation System

Megha N. Parajulee, Stanley C. Carroll, Douglas M. Nesmith, and James P. Bordovsky......17

Appendix

Rainfall and Irrigation Summary of Field Operations

Texas A & M University System Texas Agricultural Research and Extension Center Lubbock/Halfway

Name	Specialty	Association ¹	E-mail Address
Jaroy Moore	Resident Director	TAES	j-moore@tamu.edu
Aaron Alexander		TCE	
Scott Asher	Former Technical	Monsanto	
	Development Rep.		
Craig Bednarz	Plant Physiologist	TAES, TTU	craig.bednarz@ttu.edu
Matt Blackerby	Technician	TAES	mdblackerby@ag.tamu.edu
Randy Boman, Ph.D.	Agronomy - Cotton	TCE	r-boman@tamu.edu
James P. Bordovsky, M.S.	Ag Engineering - Irrigation	TAES	j-bordovsky@tamu.edu
Stanley C. Carroll, M.S.	Entomology - Cotton	TAES	s-carroll2@tamu.edu
Andy Cranmer, M.S.	Irrigation/Entomology	TAES	amcranmer@ag.tamu.edu
Greg Cronholm	Integrated Pest Management	TCE	g-cronholm@tamu.edu
John Everitt, M.S.	Agronomy - Weed Science	TAES	j-everitt@tamu.edu
Wayne Keeling, Ph.D.	Agronomy - Weed Science	TAES	w-keeling@tamu.edu
Mark Kelley, M.S.	Agronomy - Cotton	TCE	m-kelley@tamu.edu
Chance McMillan	Technician	TAES	
Cory Mills	Graduate Research Associate	TAES, TTU	cory.mills@ttu.edu
Joe Mustian, B.S.	Engineering - Irrigation	TAES	jmustian@ag.tamu.edu
Doug Nesmith, M.S.	Research Farm Manager	TAES	d-nesmith@tamu.edu
Megha Parajulee, Ph.D.	Entomology	TAES, TTU	m-parajulee@tamu.edu
Wenwei Xu, Ph.D.	Corn Genetics	TAES, TTU	we-xu@tamu.edu

Research Participants

^TTAES – Texas Agricultural Experiment Station, TCE – Texas Cooperative Extension, TTU – Texas Tech University

Introduction

The Texas A&M University System purchased 373 acres of farmland from the estate of Ardella Helm in December, 1999, for the sole purpose of conducting large scale research and extension programs to enhance producer profitability and sustainability in an irrigated environment. The farm is located 2 miles south of the Texas Agricultural Research and Extension Center at Halfway in Hale County.

Current projects at the Helms Research Farm involve production options and economics of subsurface drip irrigation (SDI) and site-specific farming. Other research projects include weed and insect control, plant breeding and yield trials for several commodities and production systems projects. Irrigated experiments were conducted under the 130 acre center pivot and on 86-acres of SDI.

The soils are predominantly deep clay loams and silty clay loams, with 0-1% and 1-3% slopes, moderately to moderately slowly permeable subsoils and high water and fertility holding capacities. Supplemental water for irrigation comes from four wells, 320 to 340 feet deep, pumping at rates of 300 to 400 gallons per minute each.

Corn Breeding (Field 1) Wenwei Xu

Objective: The objectives are to develop multiple stress tolerant corn germplasm (lines and hybrids) by transferring desirable genes from exotic germplasm into temperate lines.

Methodology: Helms Farm is a primary test site for field evaluation of drought tolerance, heat tolerance, insect resistance, yield and other agronomic traits. In 2006, we conducted a series of studies at the Helms Farm:

- Evaluation of 500 experimental hybrids for yield, drought tolerance, and other agronomic traits. They were grown under 100% ET, 50% ET and V-14 drought stress conditions. The plants under 100% ET and 50% ET were watered throughout the growing season. The drought intensity in 50% ET was 40% yield reduction as compared to 100% ET. For V-14 drought stress, irrigation was withheld from V-12 to one-week after flowering.
- Effect of genotypes and irrigation treatments on silage yield and quality.
- Evaluate of the commercial hybrids (including drought tolerant transgenic hybrids) for yield and drought tolerance in collaboration with seed companies.

Results: Several TAES experimental hybrids yield equally or higher than commercial checks. These hybrids include S2B73BC x NC300, LH200 x SPG3, and LH200 x Tx205. These results will be used to write the release proposals of new inbred lines. Drought stress has more negative impact on grain yield than silage yield. On the average, when drought stress reduced grain yield by 17-70%, the dry biomass was declined by 31-45%. Drought stress significantly reduced silage quality. The silage of all eight hybrids from limited irrigation treatment had higher crude protein, lignin, sugar, and neutral detergent fiber contents but lower starch and total digestible nutrient contents than the silage from well watered treatment.

Expectations: New drought and heat tolerant lines and hybrids have been developed and will be released to the seed industry and public sectors. These lines and hybrids can be used for grain and silage corn production. Adoption of new corn germplasm and accompanied strategies for irrigation and crop management can save 5-10% of the irrigation water requirements.

Cotton Irrigation Management with SDI (Field 2)

James P. Bordovsky, Joe Mustian, and Andy Cranmer

Objective: Evaluate cotton production resulting from two management scenarios: 1) <u>*High*</u> <u>*Input*</u> - applies resources on limited areas to achieve maximum lint yield and 2) <u>*Normal Input*</u> - distributes the same resources over a wider area and is a typical management strategy.

Fig. 1. Dry, *<u>High Input</u>*, and *<u>Normal Input</u>* plots of SDI management study, TAES, Helms-Halfway.

Methodology: Cotton was planted in a field where a ten-zone SDI system was installed. Irrigations were applied in alternate furrows of 30-inch rows with each zone 1300 ft by 16 rows wide and independently controlled and metered. Two cotton management strategies were compared. A High Input, high-yield management scenario with the production goal of 3.5 bales per acre and no restriction on input level was replicated in four plots. The Normal Input scenario, with an annual yield goal of 2.5 bales per acre, was also replicated four times. In 2006, each zone was planted with two different varieties, FM989B2R, a picker variety that has performed well at this

location over a range of irrigation quantities, and DP2280BR, a more determinant stripper variety. Seasonal irrigation in the *Normal* treatment totaled 16.4 inches compared to 20.0 inches in the *High Input* treatments.

Results: Table 1 shows lint yield, loan value, seasonal irrigation water use efficiency, and seasonal irrigation water value of <u>Normal</u> and <u>High Input</u> treatments. The FM989B2R variety resulted in significantly higher yield, loan values, and water values than did DP2280BR in this long dry growing season. However, different than in past "dry" years, the <u>Normal</u> treatment resulted in similar yield and loan values compared to the <u>High Input</u> treatment using less water, fertilizer, and growth regulators. This resulted in significantly higher seasonal irrigation water use and irrigation water value for the <u>Normal</u> over the <u>High Input</u> treatment. For example, an

acre-inch of irrigation was worth \$60 in the *Normal* treatment planted with FM989 compared to only \$35 in the *High Input* treatment planted with DP2280. Economic evaluations using field data from 2001 to 2006 will help determine best management practices with SDI.

	Treatment							
	Variety	Dry	Normal Input	High Input	Difference			
Yield (lb/ac)	FM989B2R	366	2074 a*	1893 a	-181			
	DP2280BR	300	1654 a	1630 a	-24			
Loan Value (\$/lb)	FM989B2R	0.556	0.575 a	0.566 a	-0.009			
	DP2280BR	0.471	0.536 a	0.534 a	-0.002			
Sea. Irr. WUE (lb/ac-in)	FM989B2R		104.3 a	73.9 b	-30.4			
,	DP2280BR		81.2 a	65.4 b	-15.8			
Sea. Irr. Value (\$/ac-in)	FM989B2R		60 a	41.8 b	-18.2			
	DP2280BR		43.8 a	35.2 b	-8.6			

Effect of SDI Design on Cotton Lint Yield (Field 3)

James P. Bordovsky and Joe Mustian

Objective: Evaluate the effect of water distribution by three SDI designs having flow variations (FV's) of 0.71, 0.85, and 0.94 over 1300-ft. lengths in terms of available soil water, emitter flow rates, and cotton lint yields.

Methodology: SDI designers and irrigators need to know the magnitude of cotton yield losses if average emitter flow variances drop well below current design standards. A SDI system was installed on a 16-acre area with drip lines located in alternate furrows on 30-inch rows. The field was divided into four blocks with six sub-zones per block. Within each block, sub-zones were

Fig. 1. SDI design experiment cotton harvest at TAES, Helms Farm.

irrigated by 0.630-in., 0.875-in., or 0.990in. diameter drip tape, representing poor (**POOR**), very good (**VGOOD**), and acceptable (**ACC**) water distribution designs having estimated field FV's of 0.71, 0.94, and 0.85 at operating pressures of approximately 10, 12, and 6.5 psi, respectively.

Results: Total cotton lint yield within an irrigation level was not affected by water distribution designs having FV's between 0.71 and 0.94. Table 1 compares lint yield, micronaire, and loan values resulting from three designs and two water levels in 2006. Lint yield ranged from

1879 to 1962 lb/ac for VGOOD to POOR SDI designs, respectively, at the 0.6BI irrigation level (14.8 inches of total irrigation). Yields were significantly higher at 1.0BI irrigation level (20.0 inches of total water), but design treatments resulted in no differences in yield. An analysis of cotton lint fiber quality showed no differences in average fiber quality parameters, or, therefore, lint value (loan price) as a result of SDI design. However, micronaire was reduced from premium to the base range with higher irrigation. An economic analysis of six 160-acre SDI

installations designed to represent the six treatments of this experiment is currently underway. In some instances, SDI installation costs may be reduced by relaxing design specifications.

Table 1. Comparison of cotton lint yield, micronaire, and loan value resulting from three								
SDI system designs, TAES, Halfway, 2006.								
SDI Design Irrigation Level Yield (lb/ac) Mic (gr/tex) Loan Value (\$/lb)								
Poor	0.6BI	1962 bcd*	3.940 a	0.577 a				
Vgood	0.6BI	1879 d	3.909 a	0.579 a				
Accept	0.6BI	<u>1902</u> cd	<u>3.926</u> a	<u>0.576</u> a				
Average 1914 B** 3.925 A 0.577 A								
Poor	1.0BI	2027 ab	3.561 b	0.570 a				
Vgood	1.0BI	1990 abc	3.618 b	0.570 a				
Accept	1.0BI	<u>2056</u> a	<u>3.571</u> b	<u>0.570</u> a				
Average 2024 A 3.583 B 0.570 B								
*Column means followed by the same lower case letter are not significantly different (P<0.05, LSD).								
*Column means for	ollowed by the same u	pper case letter are n	ot significantly diffe	rent (P<0.05, LSD).				

Evaluation of Visual vs. Beat Bucket Sampling for Pests and Beneficials in Cotton (Field 5A) Greg Cronholm

Objective: To evaluate beat bucket as a sampling tool for cotton IPM compared to the standard visual sampling method for plant bug pests and beneficials.

Methodology: Four varieties were sampled (DP108RR-F, DP117B2RF, ST4664RF, ST4554B2RF) for plant bugs and beneficial arthropods using the visual and beat bucket methods. The beat bucket used for sampling was a 21 quart plastic bucket with a rectangular opening at the top. Plants were sampled on August 29, 2006 at the Helms Farm, Halfway. Plot size was 4 rows x 100 feet. Visual samples were taken on 6 plants per replicate with 4 replicates sampled. Beat bucket samples were taken on 6 plants per replicate for 4 replicates for each variety. No statistical differences were found for varieties, therefore varietal counts were pooled for comparisons.

Results: Table 1 shows a summary of all predators sampled. The beat bucket averaged 31.25 predators per 24 plants sampled, which was significantly higher than the 14.5 predators observed for the visual method. Table 1 also shows a summary of plant bug adults and nymphs observed which were cotton fleahopper and Lygus. The beat bucket samples averaged 39.75 bugs per 24 plant sample versus 9.5 bugs for the visual. The beat bucket was significantly better than the visual method for plant bug detection. Time for sampling was also recorded during the experiment. The visual sampling averaged 2.7 minutes per plant, while the beat bucket averaged 1.6 minutes per plant. The beat bucket method was 4.2 times more efficient than visual for plant bug sampling and 2.2 times more efficient for predator samples. The beat bucket method also took 40% less time than the visual procedure. Based on this data, it will be suggested that IPM programs, independent consultants and area growers consider using the beat bucket as a sampling tool.

our cotton varieties by two sampling methods, Helms Farm, 2006.							
	All Preda	ators	All Plant	Bugs			
	Beat Bucket	Visual	Beat Bucket	Visual			
Variety 1	29	12	42	7			
Variety 2	28	16	32	13			
Variety 3	30	13	46	6			
Variety 4	<u>38</u>	<u>17</u>	<u>39</u>	<u>12</u>			
Average	31.25b	14.5a	39.75b	9.5a			

Table 1. Summary of predator and plant bugs observed from replicated, 24-plant samples of four cotton varieties by two sampling methods, Helms Farm, 2006.

Replicated Transgenic Cotton Variety Demonstration Under LEPA Irrigation (Field 5A) Mark Kelley, Aaron Alexander, Randy Boman, Doug Nesmith, and James P. Bordovsky

Objective: The objective of this project was to compare yields, gin turnout, fiber quality and economics of variety and technology selection under LEPA irrigation.

Methodology: Ten varieties were planted on 17-May in 30-inch rows at a rate of 3.2 seed/ row-ft with a John Deere Max Emerge II vacuum planter. A randomized complete block design with three replications was utilized. LEPA irrigation applied 12.47 inches during the growing season. Accumulated rainfall amounts of 2.79 inches prior to planting and 10.93 inches from planting to 30-Sep were recorded. Plots were cultivated on 8-June and furrow diked on 9-June. Fertility management included 65 lb/a P₂O₅ (10-34-0) and 19 lb/a N (32-0-0) applied with coulter rig on 10-Apr, 60 lb/a N (32-0-0) applied with coulter rig on 23-May, and 67 lb/a N (32-0-0) applied through the pivot (fertigation) from 28-Jun to 27-July. Weed management consisted of 22 oz/a Roundup Original Max and 48 oz/a Prowl applied preplant on 25-April and 32 oz/a Glystar applied 5-June. Temik was applied at 3 lb/a infurrow at planting. Harvest aids applied on 24-Oct consisted of 32 oz/a Prep, 1.5 oz/a ET and 1% v/v (1 gal/100 gal spray solution) crop oil concentrate.

Ginning costs were based on \$2.45 per cwt of bur cotton and seed value was based on \$125/ton. Seed and technology costs were calculated using the appropriate seeding rate (3.2 seed/row-ft) for the 30-inch row spacing and entries using the online Plains Cotton Growers Seed Cost Comparison Worksheet with Monsanto Cap Cost Thresholds available at: <u>http://www.plainscotton.org/Seed/seedindex.html</u> . Net value was determined by subtracting ginning and systems costs from the total value.

Results and Discussion: These results indicate that variety selection can significantly impact final net value/acre (Table 1). Lint turnout ranged from 29.0% for Beltwide Cotton Genetics (BCG) 4630B2F to 33.5% for Stoneville 4554B2RF. Lint yields varied from a low of 1422 lb/acre (BCG 4630B2RF) to a high of 1682 lb/acre (Paymaster 2140B2RF and Stoneville 4554B2RF). Lint loan values ranged from a low of \$0.4813/lb to a high of \$0.5345/lb for BCG 4630B2RF and AFD 5065B2F, respectively. After adding lint and seed value, total value/acre ranged from a low of \$859.59 for BCG 4630B2RF, to a high of \$1077.31 for AFD 5065B2F. When subtracting ginning costs and seed and technology fees, the net value/acre among varieties ranged from a high of \$891.29 (AFD 5065B2F) to a low of \$680.80 (BCG 4630B2RF), a difference of \$210.49. These data indicate that substantial differences can be obtained in terms of net value/acre due to variety and technology selection. It should be noted that no inclement weather was encountered at this location to cause preharvest losses of picker-type varieties. Additional multi-site and multi-year applied research is needed to evaluate varieties across a series of environments.

Table 1. Harvest results from the irrigated replicated transgenic cotton variety demonstration, Texas Agricultural Experiment Station, Helms Farm, Halfway, TX, 2006.

		D			.					0 1/		
									~			
Lint	Seed	cotton			loan	Lint	Seed	Total	Ginning	technology	Net	
rnout	turnout	yield	yield	yield	value	value	value	value	cost	cost	value	
%	%	lb/acre	lb/acre	lb/acre	\$/lb	\$/acre	\$/acre	\$/acre	\$/acre	\$/acre	\$/acre	
30.1	56.5	5496	1652	3104	0.5345	883.28	194.03	1077.31	134.64	51.38	891.29	a
33.1	54.6	5089	1682	2778	0.5223	878.47	173.61	1052.08	124.67	55.15	872.26	ab
3.5	56.7	5027	1682	2852	0.5157	867.70	178.24	1045.95	123.17	59.64	863.14	ab
32.3	53.8	4948	1597	2661	0.5282	846.33	166.30	1012.63	121.24	55.48	835.91	abc
32.3	52.4	4892	1582	2563	0.5120	809.61	160.20	969.80	119.86	61.20	788.75	abcd
30.0	55.2	5306	1592	2931	0.4963	790.13	183.14	973.27	130.01	56.15	787.11	abcd
29.7	56.2	5222	1553	2936	0.5048	783.64	183.52	967.17	127.95	59.89	779.33	bcd
31.1	55.8	5091	1585	2838	0.4938	782.52	177.40	959.91	124.74	58.80	776.38	bcd
30.0	53.9	4816	1445	2597	0.5158	745.66	162.30	907.96	117.99	56.52	733.45	cd
29.0	56.3	4898	1422	2759	0.4813	687.16	172.44	859.59	119.99	58.80	680.80	d
31.1	55.1	5079	1579	2802	0.5105	807.45	175.12	982.57	124.43	57.30	800.84	
3.7	1.8	5.5	5.5	5.5	4.2	7.7	5.5	7.2	5.5		8.1	
0010	0.0006	0.1538	0.0188	0.0107	0.1441	0.0213	0.0108	0.0356	0.1538		0.0207	
2.0	1.7	NS	148	264	NS	107.34	16.50	121.51	NS		111.39	
	nout % 0.1 3.1 3.5 2.3 2.3 2.3 0.0 9.7 1.1 0.0 9.0 1.1 .7 0010	nout turnout % % 0.1 56.5 3.1 54.6 3.5 56.7 2.3 53.8 2.3 52.4 0.0 55.2 9.7 56.2 1.1 55.8 0.0 53.9 9.0 56.3 1.1 55.1 4.7 1.8 0010 0.0006	nout turnout yield % % lb/acre 0.1 56.5 5496 3.1 54.6 5089 3.5 56.7 5027 2.3 53.8 4948 2.3 52.4 4892 0.0 55.2 5306 9.7 56.2 5222 1.1 55.8 5091 0.0 53.9 4816 9.0 56.3 4898 1.1 55.1 5079 7 1.8 5.5 010 0.0006 0.1538	int Seed nout cotton b/acre Lint yield % b/acre b/acre 0.1 56.5 5496 1652 3.1 54.6 5089 1682 3.5 56.7 5027 1682 2.3 53.8 4948 1597 2.3 52.4 4892 1582 0.0 55.2 5306 1592 9.7 56.2 5222 1553 1.1 55.8 5091 1585 0.0 56.3 4898 1422 1.1 55.1 5079 1579 7.7 1.8 5.5 5.5 010 0.0006 0.1538 0.0188	int Seed cotton Lint Seed nout turnout yield yield yield yield % Ib/acre Ib/acre Ib/acre Ib/acre Ib/acre 0.1 56.5 5496 1652 3104 3.1 54.6 5089 1682 2778 3.5 56.7 5027 1682 2852 2.3 53.8 4948 1597 2661 2.3 52.4 4892 1582 2563 0.0 55.2 5306 1592 2931 9.7 56.2 5222 1553 2936 1.1 55.8 5091 1585 2838 0.0 53.9 4816 1445 2597 9.0 56.3 4898 1422 2759 1.1 55.1 5079 1579 2802 7.7 1.8 5.5 5.5 5.5 010 0.0006	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	intSeedcottonLintSeedloanLintSeedTotalnoutturnoutyieldyieldyieldvaluevaluevaluevaluevaluevalue $\%$ Ib/acreIb/acreIb/acreIb/acre $\%/lb$ \$/acre\$/acre\$/acre\$/acre0.156.55496165231040.5345883.28194.031077.313.154.65089168227780.5223878.47173.611052.083.556.75027168228520.5157867.70178.241045.952.353.84948159726610.5282846.33166.301012.632.352.44892158225630.5120809.61160.20969.800.055.25306159229310.4963790.13183.14973.279.756.25222155329360.5048783.64183.52967.171.155.85091158528380.4938782.52177.40959.910.053.94816144525970.5158745.66162.30907.969.056.34898142227590.4813687.16172.44859.591.155.15079157928020.5105807.45175.12982.577.71.85.55.55.54.27.75.57.2<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	intSeedcottonLintSeedloanLintSeedTotalGinningtechnologymoutturnoutyieldyieldyieldvaluevaluevaluevaluevaluevaluecostcostcost $\%$ b/acreb/acreb/acreb/acre $\$/lb$ $\$/acre$ $t/acre$ <td>intSeedcottonLintSeedloanLintSeedTotalGinningtechnologyNetmoutturnoutyieldyieldyieldvaluevaluevaluevaluevaluecostcostcostvalue%lb/acrelb/acrelb/acrelb/acre$\\$/lb$$\\$/acre$$\ast/acre$$\\$/acre$$\\$/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$$\ast/acre$<t< td=""></t<></td>	intSeedcottonLintSeedloanLintSeedTotalGinningtechnologyNetmoutturnoutyieldyieldyieldvaluevaluevaluevaluevaluecostcostcostvalue%lb/acrelb/acrelb/acrelb/acre $\$/lb$ $\$/acre$ $\ast/acre$ $\$/acre$ $\$/acre$ $\ast/acre$ <t< td=""></t<>

Large-plot Non-replicated Cotton Variety Comparison at Helms Farm (Field 5A) Wayne Keeling, John Everitt, James P. Bordovsky, Doug Nesmith, and Scott Asher

Methodology:

Plot Size:	4 rows by 1000 feet
Planting Date:	May 10
Seeding Rate:	56,000 sd/A
Fertilizer:	145-65-0
Irrigation	Pre-plant 2.0"
	Seasonal 12.5"
Herbicides:	Prowl 2 pt/A PPI
	Roundup WeatherMax
	22 oz/A POST
Harvest Date:	November 6

Results:

Sixteen Roundup Ready, Roundup Ready Flex and stacked–gene varieties were compared. Lint yields ranged from 1385 to 1997 lbs lint/A (Table 1). These varieties represent a wide range of maturities, and with a long growing season in 2006, higher yields were produced with the longer maturity varieties. Loan values ranged from 51.1 to 58.10 ¢/A. Gross revenues exceeding 1000 A were achieved with ST 4554 B2RF, FM 960 BR, FM 960 B2R, ST 43576 B2RF, and NG 2448 BR. Lint yield, loan values and gross value/A are summarized in Table 1.

Variety	Yield	Loan	Gross
-	(lbs lint / A)	Value (\$)	Value (\$/A)
ST4554B2RF	1997	0.577	1,151
FM960BR	1954	0.558	1,090
FM960B2R	1877	0.563	1,056
ST4357B2RF	1771	0.589	1,042
ST5599BR	1826	0.553	1,009
DP444BG/RR	1755	0.560	983
ST4700B2RF	1685	0.577	971
ST5242BR	1679	0.563	945
DP117B2RF	1603	0.585	937
ST5007B2RF	1362	0.561	764
NG 2448R	1816	0.581	1,055
NG 3550RF	1694	0.577	976
NG 3273B2RF	1580	0.544	859
PM 2145RR	1475	0.568	838
NG 1553R	1385	0.560	776
NG 1572RF	1402	0.511	717

Table 1. Cotton lint yields, loan value, and gross value/A for sixteen transgenic varieties at Helms Farm, 2006

Comparison of Conventional and Conservation Tillage Systems for Cotton (Field 5BCE) James Bordovsky, Chance McMillan, Doug Nesmith, Wayne Keeling, John Everitt

Objective: The objective was to determine crop response of conservation versus conventional tillage of cotton in a three year rotation with corn.

Methodology: Fibermax 989B2R was planted in two tillage treatments in a three year rotation with corn. The rotation sequence included: Ct-Ct-Cn (cotton-06, cotton-04, and corn-05); Ct-Corn-Ct (cotton-06, corn-04, cotton-05); and Ct-Ct-Ct (continuous cotton). Tillage treatments included conventional tillage (shred, disc, list, rolling cultivator, rod weed, in-season cultivation) alone versus no-till treatments (stalk-puller). Weeds were controlled with 2,4-D preplant for winter weeds in no-till areas. Prowl and Roundup were applied in-season. Approximately 16 inches of irrigation was applied during the 2006 growing season.

Fig. 1. Crop tillage study at the Helms Research Farm, 2006.

Results: Cotton yield from the Ct-Ct-Corn cropping sequence area is not reported due to herbicide damage within treatment areas. Cotton yields and water values were much higher where corn had been grown 2 years prior to the current cotton crop compared to the continuous cotton treatment. Top yields were 1983 and 1248 lb/ac, and top water values at \$56 vs \$31/ac, respectively, for Ct-Corn-Ct and CtCtCt treatments. Tillage significantly increased yields and seasonal irrigation water value over no-till treatments. This was attributed to better germination due to better seed to soil contact during a weather adverse planting period characterized by high wind speeds, low humidity. Work continues to determine management practices that bring high value to limited water resources.

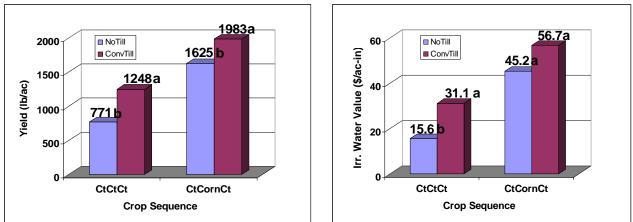


Fig. 2. Cotton lint yield and seasonal irrigation water value from a field experiment with factors of tillage, cropping sequence at the Helms Research Farm, 2006.

Cotton Response to Irrigation Level and Crop History (Field 5BDE)

James P. Bordovsky, Joe Mustian, and Doug Nesmith

Objective: A field experiment was conducted to determine yield and in-season irrigation water value of cotton production as a function of two popular cotton varieties, three irrigation levels, and two crop sequences.

Methodology: Both cotton varieties were Fibermax – FM989B2R, was a full season variety and has consistently produced high yields at this site over a wide range of moisture conditions, and FM960B2R, shorter season variety and perhaps more tolerant to water stress. The base irrigation level (1.0BI treatment) met approximately 80% of crop water needs using ET scheduling. The two other water levels were $\pm 20\%$ of this amount (0.8BI and 1.2BI). All variety x irrigation treatments were planted at 55,000 ppa in areas of either

Fig. 1. Large plot cotton harvest at Helms farm.

continuous cotton (Cont. Cot.) or in rotation with corn, with corn planted every three years (Ct-Cu-Ct or Ct-Ct-Cn Treatments). Crop responses were evaluated by harvesting 4 rows x 60° pivot arc with a John Deere 4550 stripper, determining burr weight with calibrated trailer scales, and establishing turnout and fiber data from 3-lb sub-samples from each replicate. All treatments were replicated three times.

Results: The crop sequence areas were not replicated, therefore, only general comparisons can be made between these treatments. In general having corn in the rotation with cotton tended to increased cotton yield and lowered fiber quality compared to continuous cotton. Table 1 gives lint yield of the two varieties at the three irrigation levels in the three crop sequence areas. In both the Cont. Cot and the Ct-Ct-Cn areas, FM989 resulted in significantly higher yield than the FM960 (data not shown). Yields increased significantly with the increase in irrigation level from the 0.8BI to the 1.0BI treatment, but yields of the 1.0BI and 1.2BI treatments were not significantly different. Figure 2 shows an increase in water value between the 0.8 and 1.0BI treatments in three of the four treatments, however, this value declines with additional water inputs. These field tests will help evaluate management options that maintain productivity in the short term, while trying to improve the value of our limited water resources for the future.

			Crop Sequence	
Irrigation				
Level	Variety	Cont. Cot	Cot-Cot-Corn	Cot-Corn-Cot
0.8BI	FM960B2R	1301.0 c	1447.0 b	1720.0 b
	FM989B2R	<u>1376.0</u> c	<u>1484.0</u> b	
	Avg	1338.5 B	1465.5 В	
1.0BI	FM960B2R	1420.0 bc	1720.0 ab	1979.0 a
	FM989B2R	<u>1650.0</u> ab	<u>1821.0</u> ab	
	Avg	1535.0 A	1770.5 A	
1.2BI	FM960B2R	1499.0 abc	1537.0 ab	2039.0 a
	FM989B2R	<u>1714.0</u> a	<u>1614.0</u> ab	
	Avg	1606.5 A	1575.5 AB	

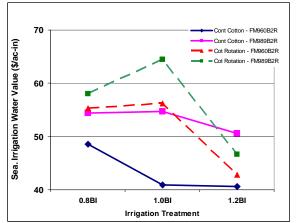


Figure 1. Seasonal irrigation water value of two cotton varieties and two cropping sequences at three irrigation levels, TAES, Halfway, 2006.

Large-plot, Non-replicated Corn Variety Comparison at Helms Farm (Field 5C) Wayne Keeling, John Everitt, James P. Bordovsky, Doug Nesmith, and Scott Asher

Methodology:

Plot Size:	4 rows by 1000 feet
Planting Date:	April 1, 2006
Planting rate:	32,000 seed/A
Fertilizer:	243-65-0
Irrigation	Pre-plant 2.0"
	Seasonal 23.76"
Herbicides:	Harness 1.8 qt/A
	Roundup
	WeatherMax 22
	oz/A PRE
Harvest Date:	September 28

Results:

Sixteen corn hybrids, including commercial and experimental varieties, were planted in a largeplot, non-replicated variety test at Helms Farm in 2006. Yields ranged from 147 to 210 bu/A. Variety, traits, relative maturity, yield, and moisture content at harvest are summarized in Table 1.

Brand	Product	Trait(s)	Relative Maturity	Yield (bu / A)	Moisture Content (%)
Dekalb	DKC60-17	RR2	110	159	14.3
Monsanto	ND6025	CONV	110	159	13.7
Monsanto	ND6021	CONV	110	169	14.1
Pioneer	34N43	CONV	110	158	14.8
Monsanto	ND6137EZA1	YGCB	111	163	14.6
Monsanto	ND6019	CONV	110	148	14.1
Dekalb	DKC61-72	RR2	111	159	14.4
Monsanto	ND6139NRR1	RR2	111	133	14.5
Asgrow	RX715RR2/YGCB	RR2/YGCB	111	211	15
Monsanto	ND6129	CONV	111	192	14.5
Pioneer	33B50	CONV	112	203	15.1
Dekalb	DKC61-68	RR2/YGRW	111	189	15.5
Monsanto	ND6232	CONV	112	177	14.8
Monsanto	ND6233	CONV	112	166	14.5
Asgrow	RX752RR2/YGPL	RR2/YGPL	112	201	14.4
Dekalb	DKC66-23	RR2/YGCB	116	193	14.3
	Test Average			174	14.54

Table 1. Corn varieties, traits, yields, and moisture at Helms Farm, 2006.

Cotton Variety Performance As Affected By Low-Energy Precision Application (LEPA) Irrigation Levels (Field 5F)

Wayne Keeling, James P. Bordovsky, Randy Boman and John Everitt

Methodology:

Plot Size:	4 rows by 1000 feet, 4 replications
Planting Date:	May 8
Varieties:	Stoneville 4554 B2RF
	FiberMax 9063 B2RF
	Stoneville 4700 B2RF
	Delta Pine 117 B2RF
Herbicides:	Prowl 2 qt/A PPI
	Roundup OriginalMax 32 oz/A POST
	Roundup OriginalMax 32 oz/A POST
Fertilizer:	145-24-0
Growth Regulator:	8 oz/A (only on High irrigation treatments)
Irrigation in-season:	Low 11.83", Medium 13.87", High 15.33 "
Harvest Date:	November 9

Results:

Cotton lint yields ranged from 1315 to 1784 lbs lint/A. When averaged across irrigation levels, similar lint yields were produced with ST 4554 B2RF, ST 4700 B2RF, and FM 9063 B2RF. When varieties were averaged within an irrigation level, similar yields were produced with all three irrigation levels (Table 1). When averaged across irrigation levels, highest gross revenues (yield X loan price) were produced with ST 4554 B2RF and FM 9063 B2RF. Similar gross revenues were produced with all three irrigation levels.

Table 1. Effects of RRF/BGII variety and LEPA irrigation levels on cotton lint yields and gross revenues at Helms Farm, Halfway, TX, 2006.

	, , . , . , . , . , . ,				
	Variety	Low	Med	High	Avg.
Lint Yield (lb/A)	ST 4554 B2RF	1636	1597	1581	1605 A
	DP 117 B2RF	1315	1360	1363	1346 B
	ST 4700 B2RF	1452	1443	1577	1490 AB
	FM 9063 B2RF	<u>1507</u>	<u>1784</u>	<u>1655</u>	1649 A
		1477 a	1546 a	1544 a	
Gross Revenue	ST 4554 B2RF	822	809	870	867 A
(\$/A)	DP 117 B2RF	679	696	631	669 B
	ST 4700 B2RF	782	738	765	761 B
	FM 9063 B2RF	<u>825</u>	<u>990</u>	<u>961</u>	925 A
		802 a	808 a	807 a	

Yield, Quality, Profitability and Drought Avoidance of Cotton Produced at Varying Plant Densities (Field 6A-F)

Craig Bednarz, James P. Bordovsky, Wayne Keeling, Randy Boman, Cory Mills and John Everitt

Objective: The objectives of this work are to determine how lint yield, fiber quality, profitability and drought avoidance are affected by plant density.

Methodology: Studies were conducted using two subsurface irrigation treatments (1.0 base irrigation and 0.6 base irrigation), three plant densities (32,000, 56,000 and 80,000 plants/acre) and two cultivars (ST.4554 BII/RF and FM 9063 BII/RF). Plant density and yield potential interactions are not well understood and the optimum plant density may change with irrigation level. Thus, an irrigation treatment was included in the study. Throughout the growing season, light interception was monitored. With this information, the relationship between season-long cumulative solar radiation and lint yield will be determined. This information is intended to be useful for determining reasonable yield goals under replant decisions (following hail, etc.) or under various deficit irrigation scenarios. Also, the number of nodes above the first square, the number of nodes above white flower and the number of nodes above cracked boll were monitored throughout the growing season to determine crop maturity. Prior to machine harvest, plants from 10 feet of row were removed from the field and will be hand harvested by fruiting position. In this manner, whole plant yield components (bolls per acre, weight per boll, etc.) and within-boll yield components (seed per boll, fiber per seed, etc.) under differing levels of irrigation availability and plant density will be determined.

Results: At this time data collection and analysis are not complete.

Cotton Variety Performance as Affected by Subsurface Drip Irrigation (SDI) Levels at Helms Farm (Field 6A-F)

Wayne Keeling, James P. Bordovsky, Randy Boman, and John Everitt

Methodology:

Plot Size:	4 rows by 1600 feet, 3 replications
Planting Date:	May 8
Varieties:	Stoneville 4554 B2RF
	FiberMax 9063 B2RF
	Stoneville 4700B2RF
	Delta Pine 117 B2RF
Herbicides:	Prowl 2qt/A
	Roundup WeatherMax 22 oz/A POST
Fertilizer:	Low 146-26-0; High 177-26-0
Growth Regulator:	Pentia 8 oz/A – Only on High Irrigation Treatments
Irrigation – preplant;	4.5 ac-in/ac
Irrigation - in-season:	10.35 ac-in/ac (low volume), 17.0 ac-in/ac (high volume)
Harvest Date:	November 8

Results:

When averaged across SDI irrigation levels, cotton lint yields ranged from 1442 to 1595 lbs lint/A; with no differences between varieties. When varieties were averaged within irrigation levels, similar yields were produced (Table 1). The lack of significant yield variation may partially be due to irregular stand establishment following planting. No differences in gross revenues (yield X loan price) resulted due to variety or irrigation level.

Table 1. Effects of variety and SDI irrigation levels on lint yields and gross revenues at Helms Farm, Halfway, TX, 2006.

	Variety	Low Volume	High Volume	Avg.
Lint yield (lb/A)	ST 4554 B2RF	1594	1597	1595 A
	DP 117 B2RF	1468	1480	1474 A
	ST 4700 B2RF	1427	1465	1446 A
	FM 9063 B2RF	<u>1474</u>	<u>1410</u>	1442 A
		1491 a	1488 a	
Gross revenues (\$/A)	ST 4554 B2RF	878	818	848 A
	DP 117 B2RF	724	739	732 A
	ST 4700 B2RF	760	697	729 A
	FM 9063 B2RF	822	<u>712</u>	767 A
		796 a	741 a	

Influence of Soil Nitrogen Level on Seasonal Activity of Cotton Arthropods with Drip Irrigation Systems (Field 6G)

Megha N. Parajulee, Stanley C. Carroll, Douglas M. Nesmith, and James P. Bordovsky

Objective: The objective was to evaluate the effect of nitrogen fertilizer application rates on the population dynamics of cotton arthropods.

Methodology: Experimental plots of FM 960B2R cotton were planted on May 4, 2006 at the Helms research farm located near Halfway, Texas. The experiment was a randomized block design with five treatments and five replications. The five treatments included the application of nitrogen fertilizer at the rate of 0, 50, 100, 150, and 200 lbs/acre. Cotton was planted (approximately 56,000 seeds per acre) in 30-inch rows and was irrigated with a drip irrigation system. We took soil samples from the experimental plots on June 28 for residual nitrogen analysis and monitored crop growth and insect activity throughout the season. Fertility treatments were applied on July 18 with a soil applicator ground rig.

Results: Cotton arthropod populations did not build in 2006. Periodic observations showed only sporadic presence of cotton aphids, but not sufficient in numbers for seasonal monitoring. As a result, no leaf moisture or leaf nitrogen was monitored. Nevertheless, after four years of continuous application of variable rate of nitrogen, residual nitrogen levels varied significantly among the five nitrogen levels. Clearly, the application resulted no nitrogen in significantly lower residual nitrogen compared with that in 100, 150 and 200 lbs/acre treatments (Fig. 1). The 200 lbs/acre treatment had the highest residual nitrogen compared with the other four treatments. The study planned for 2007 should provide ideal treatment plots for variable nitrogen study as there has been additional depletion in the zero nitrogen plots during 2006.

Variation in residual nitrogen levels coupled with variable nitrogen application resulted in phenotypic expression of nitrogen deficiency in cotton across treatment plots, especially between zero-N plots and nitrogen-applied plots. The zero-N plots produced the lowest yield (775 lbs/acre) and the yield increased linearly with each additional 50 lbs of added N (Fig. 2).

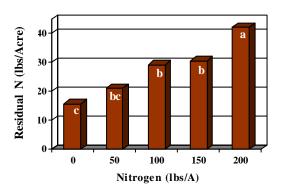


Fig. 1. Effect of nitrogen application rates on residual nitrogen after four years.

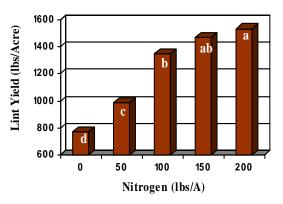


Fig. 2. Effect of nitrogen application rates on lint yields after four years.

Farm Scale Yield Comparisons of Subsurface Drip Irrigation to Center Pivot Irrigation James P. Bordovsky, Doug Nesmith, Matt Blackerby, and Chance McMillan

Objective: To compare lint yields and irrigation quantities used from farm scale cotton production irrigated by subsurface drip irrigation (SDI) and LEPA.

Methodology: Interest in subsurface drip continues to grow as water availability decreases and opportunities for cost share assistance for water conserving irrigation equipment becomes available. The question of cotton production using SDI verse pivot is often asked. The Helms Research Farm at Halfway provides a unique, controlled environment to answer this question. The problems not normally encountered in small plot research, such as limited irrigation water, inconsistent soils, and/or challenging topography, had to be addressed while irrigating 71 acres with SDI and up to 100 acres with LEPA during the 2002 to 2006 growing seasons. Details of SDI and LEPA irrigated cotton experiments are contained in the previous reports. This report contains average commercial cotton gin yields and irrigation amounts used to achieve those yields with these irrigation systems.

Results: The lack of early season rainfall and the typical high winds and low humidity at planting has caused problems with cotton germination in SDI areas in most years. Excess drip irrigation to achieve germination also

resulted in moving planter applied insecticides away from the seed drill resulting in foliar insecticide battles with thrip. In cool years, young cotton plants in all areas struggled resulting in

slow early growth. Yields were low in 2003 and 2005 due to cool, wet weather at planting and hail, respectively. Overall cotton yields were high. SDI yields averaged 1264 lb/ac using 15.12 inches of irrigation compared to LEPA yields of 1152 lb/ac using an average of 11.67 inches. Drip yields from various experiments ranged from over 2000 to 0 lb/acre. LEPA yields were within a 600 to 2000 lb/acre range.

Table 1. Area, cotton lint yield (commercial gin yields), and total irrigation water delivered by SDI and LEPA irrigation systems at Helms, 2002-2006. Data from 2004 is estimated due to inadequate module tracking and gin data.

	•	SDI			LEPA	
	Area (ac)	Tot. Irr. (in)	Yld. (lb/ac)	Area (ac)	Tot. Irr. (in)	Yld. (lb/ac)
2002	71	18.47	1127	84	15.71	1209
2003	71	14.95	1086	103	12.86	1084
2004	71	14.00	1500	103	10.00	1100
2005	53.6	10.86	1041	60	3.05	828
2006	71	<u>17.33</u>	<u>1566</u>	100	<u>16.73</u>	<u>1537</u>
Avg.		15.12	1264		11.67	1152

Evaluation of Soil Amendments to Improve Germination with Subsurface Drip Irrigation.

James Bordovsky, Andy Cranmer, Joe Mustian, and Matt Blackerby

Objective: Germination of seed with SDI in dry periods has been a consistent problem. The objective was to evaluate the placement of soil amendments in the soil profile to determine their effect on cottonseed germination using SDI under a no/reduced rainfall scenario.

Methodology: Four soil amendments and a "check" were placed from near drip laterals to near the soil surface at 20 sites. Soil amendment treatments included two starchbased polymers (Pam and ZebaTM both at 20 lb/ac equivalent), composted cow manure (400 lb/ac), cow manure and gypsum (400 +400 lb/ac), and an untreated check. TDR sensors in an array above and to each side of the drip lateral were installed and the field where amendments and sensors were located as planted with corn to dry the profile prior to irrigating with SDI. Rainout shelters were constructed and used to prevent rainfall from interfering with soil profile wetting with the drip irrigation system. Wetting of seedbeds in controlled conditions occurred from 31 July

through 30 Aug with drip applications of 0.1" applied at 12 hour intervals. Volumetric soil water content was measured twice daily through 12 Aug and daily thereafter by TDR.

Results: The average changes in volumetric water at the uppermost sensor from the initiation of irrigation (day 208) through the 30-day irrigation period; through a "drydown" period where the plots were protected by the shelters; and through to November is shown in Figure 2. The detection of soil water first occurred 11 days following irrigation initiation in the check

treatment, followed by the Pam and compost treatments, then the other treatments. The check treatment resulted in the highest TDR readings during irrigation with the lowest in the ZebaTM and compost plus gypsum treatments. These results were somewhat disappointing. On a positive note, some of the treatments reduced the rate of surface soil water change following irrigation termination. Figure 2 also highlights the rate of soil water loss following the termination of SDI irrigation. ZebaTM resulted in the slowest rate of soil water loss with the check treatment resulting in the quickest loss. This work will continue in 2007, sensing differences in undisturbed profiles.

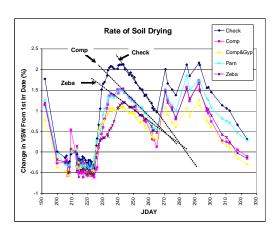


Fig.2. Changes in soil water affected by SDI irrigation measured by the top TDR sensors within soil amendment treatments at TAES, Helms Farm, 2006.

APPENDIX

			Rainfall (ii	nches)	Helms Irrig	gation Am	iounts (in	ches) L	= LEPA ir	rigation,	S = spray	irri	igation				He	lms Irrig	ation Amo	our
													Field 5 -					Field 5 -	Field 5 -	-
			Halfway								Field 5 -		В	Field 5 -				С	С	_
	Da	to	@ Building	Helms @ Well 1	Field 2			Field 3		A spans 2-4	A spans 5-8		spans 2- 4	B spans 5-8				spans 2 4	spans 5 8	-
		lle	Dulluling	Wenn	Drip			Drip		Pivot	Pivot	П	Pivot	Pivot			гİ	Pivot	Pivot	Т
					Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	ε	Cotton	Cotton			ε	Corn	Corn	E
Ло	Da	Yr			Hi Input	Normal	Dry	1.0 B.I.	0.6 B.I.			syste		Base	Base+20%	Base-20%	syste			svsterr
2	3	2006	0.05	0.04																Τ
2	18	2006	0.01	0.01																
2	19	2006	0.01	0.01								Ц							<u> </u>	_
2	25	2006	0.22	0.20								Н								+
3	18 19	2006 2006	0.41 0.59	0.35 0.52								+							<u> </u>	+
3	20	2006	0.29	0.25								Ħ								t
3	_	2006	0.10	0.10	1							П								T
3	29	2006	0.10	0.17																
4	14	2006																2.00	2.00	S
4	17	2006			0.15	0.15	0.13	0.09	0.13	0.50	0.50		0.50	0.50	0.50	0.50				╋
4	18 19	2006 2006			0.21	0.21	0.21	0.19 0.19	0.19 0.19	0.50	0.50	5	0.50	0.50	0.50	0.50	S			+
4	20	2006	1.09	0.81	0.21	0.21	0.22	0.19	0.19	1		H		-			Η			$^{+}$
4	21	2006			0.21	0.21	0.22	0.19	0.19	1	1	Ħ			1	1	П			t
4	22	2006			0.21	0.21	0.22	0.19	0.19			Π								T
4	23	2006	0.06	0.06	0.21	0.21	0.22	0.19	0.19			11					Ц			F
4	24	2006			0.21	0.21	0.22	0.19	0.18	1.00	1.00	S					Ц		┝───	╋
4 4	25 26	2006 2006		<u>├</u>	0.21 0.11	0.21 0.11	0.21 0.16	0.18 0.24	0.19 0.19			łŀ					Н		├───	+
4	26 27	2006			0.11	0.11	0.10	0.24	0.19			łŀ					Η		<u> </u>	+
4	28	2006			1			0.15	0.15	1		1 ŀ	1.00	1.00	1.00	1.00	s			t
4	29	2006						0.15	0.15			П								t
4	30	2006						0.15	0.15											
5	1	2006						0.21	0.20											
5	2	2006						0.18	0.19											_
5	_	2006	0.05	0.05	0.06	0.06	0.02	0.17	0.19			Н						0.50	0.50	
5 5	4	2006 2006	0.05	0.05	0.20	0.20	0.20	0.29	0.35			H					H	0.50	0.50	S
5	6		0.15	0.22								H								┢
5	7	2006			0.14	0.14	0.15					Ħ								t
5	8	2006			0.15	0.15	0.14													T
5																				
5	12	2006								0.10	0.10	S	0.30	0.30	0.30	0.30	S	0.10	0.10	S
5		2006								0.10	0.10	S	0.30	0.30	0.30	0.30	S	0.30	0.30	S
5 5		2006 2006			0.79	0.79				0.25	0.25	0	0.25	0.25	0.25	0.25	S	1.00	1.00	S
5	19	2000			0.44	0.44		0.23	0.05	0.25	0.25	Ĭ	0.25	0.25	0.20	0.25		1.00	1.00	۲
5	_	2006			0.22	0.22		0.17	0.18	0.25	0.25	S	0.25	0.25	0.25	0.25	S	2.00	2.00	S
5		2006	0.18	0.10	0.22	0.22		0.17	0.18											
5		2006			0.20	0.20		0.16	0.24			Ц								_
5	23	2006			0.23	0.23		0.22	0.14	0.50	0.50		0.50	0.50	0.50	0.50		1.00	1.00	╞
5 5	24 25	2006 2006		├	0.20	0.20		0.15 0.30	0.25	0.50	0.50	5	0.50	0.50	0.50	0.50	S	1.00	1.00	S
5			0.19	0.24	0.28	0.28		0.30	0.16	1		H					Η		<u> </u>	+
5	27	2006			0.27	0.27		0.26	0.14			Π					Ħ			t
5	28	2006			0.22	0.22		0.07	0.29			Π						1.00	1.00	s
5	29	2006			0.16	0.16		0.18	0.06			Д					Д			F
5	_		4.55	0.00	<u> </u>			ļ				Ц					Ц		┝───	╇
5		2006	1.20	0.96	+							Н					Н		┝───	╋
6 6		2006 2006	0.17	0.17	0.20	0.20		0.01				H					Н			+
6					0.20	0.20		5.01		1		H	1.50	1.50	1.50	1.50	S	1.50	1.50	S
6					1			1	1	1	1	Ħ	1.00	1.00	1.00	1.00	S	1.00	1.00	S
6	12	2006			0.09			0.17	0.12			Π								Г
6		2006				0.41		0.15	0.05			П					П			Г
6		2006				. ·		. · ·	. · ·	0.50	0.50	S	0.50	0.50	0.50	0.50	S	0.50	0.50	S
6					0.22	0.17		0.18	0.10			H					Ц		┝───	╀
6	16 17	2006 2006			0.66	0.43		0.24	0.15			Н					Н		┝───	╉
6				+ +	0.45	0.40		0.20	0.10	0.50	0.50	s	0.50	0.50	0.50	0.50	S	1.60	1.60	S
6						0.42		0.14	0.09		2.00	Ħ	2.50	2.00	2.00	2.00	Ń			Ť
6	20	2006			0.40			0.24	0.15	0.22	0.18	L	0.22	0.18	0.21	0.15	L	0.22	0.18	L
6		2006	0.39	0.22		0.42		0.22	0.13	0.24	0.20	L	0.24	0.20	0.23	0.16	L	0.32	0.27	L
6		2006	0.35	0.21	0.36			0.21	0.14	0.24	0.20	L	0.24	0.20	0.23	0.16	L	0.32	0.27	L
6		2006		<u>├</u>	+	0.41		0.07	0.03			H					Н	0.32	0.27	
6 6	24 25	2006 2006	0.02	0.02	+							H					Η	0.32	0.27	L
6		2006	0.02	0.02	0.39			0.21	0.13	0.24	0.20	L	0.24	0.20	0.23	0.16	L	0.44	0.00	f
6		2006				0.43		0.23	0.14	0.24	0.20	L	0.24	0.20	0.23	0.16	L	0.32	0.27	L
6				r 1	0.40			0.23	0.14	0.24	0.20	1. 1	0.24	0.20	0.23	0.16		0.32	0.27	L

			Rainfall (ir	nches)	Helms Irrig	gation Arr	nounts (in	ches) L	= LEPA ir	rigation,	S = spray i	irrigati	ion			I	He	lms Irriga	ation Amo	ount
													ld 5 -				1	Field 5 -	Field 5 -	
			Halfway @	Helms @						Field 5 - A spans	Field 5 - A spans		B ans 2-	Field 5 - B spans				C spans 2-	C spans 5-	
_	Da	te	Building	Well 1	Field 2			Field 3		2-4	5-8	_	4	5-8				4	8	—
					Drip Cotton	Cotton	Cotton	Drip Cotton	Cotton	Pivot Cotton	Pivot Cotton	~	ivot otton	Pivot Cotton			em	Pivot Corn	Pivot Corn	em
Mo	-	Yr			Hi Input	Normal	Dry	1.0 B.I.	0.6 B.I.			syst		Base	Base+20%	Base-20%	syst			system
6	_	2006 2006			0.47	0.43		0.22	0.13	0.24	0.20	-	.24 .24	0.20	0.23	0.16	L L	0.32	0.27	L
7	′ 1	2006				0.24		0.26	0.13								Ī	0.44	0.38	L
	_	2006			0.26	0.15		0.05	0.04	0.24	0.20		.24 .24	0.20	0.23	0.16	L	0.32	0.27	L
7	4	2006			0.49	0.13		0.27	0.13	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
7		2006	0.00	0.07	0.44	0.23		0.28	0.16	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
7		2006 2006	0.09	0.07	0.44	0.25		0.35	0.19 0.26	0.24	0.20	L U.	.24	0.20	0.23	0.16		0.32	0.27	L.
7		2006	0.01	0.00	0.00			0.04	0.4.4									0.00	0.07	<u> </u>
7	_	2006 2006	0.01	0.06	0.39	0.43		0.24 0.27	0.14								-	0.32	0.27	L
7		2006			0.56			0.26	0.16	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
1		2006 2006			0.57	0.43		0.27	0.16 0.18	0.24	0.20		.24 .24	0.20	0.23	0.16	L	0.32	0.27	L
7	_	2006			0.57	0.43		0.27	0.17	0.24	0.20		.24	0.20	0.23		L	0.32	0.27	L
7	-	2006			0.56	0.40		0.27	0.17	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
7	_	2006			0.56	0.43		0.15 0.19	0.16	0.24	0.20		.24 .24	0.20	0.23	0.16	L	0.32	0.27	L
7	7 19	2006				0.43		0.19	0.17	0.24	0.20	L 0.	.24	0.20	0.23	0.16	L	0.32	0.27	L
-	-	2006 2006		$ \vdash $	0.59	0.39		0.19	0.16	0.24	0.20	-	.24 .24	0.20	0.23	0.16		0.32	0.27	L
-		2006	0.08	0.06	0.54	0.39		0.20	0.18	0.24	0.20		.24 .24	0.20	0.23	0.16	L	0.32	0.27	L
7	_	2006				0.39		0.17	0.16	0.24	0.20	-	.24	0.20	0.23	0.16	L	0.32	0.27	L
7		2006 2006			0.54	0.39		0.20	0.17	0.24	0.20	_	.24 .24	0.20	0.23	0.16 0.16	L	0.32	0.27	L
7	_	2006			0.67	0.00		0.27	0.17	0.24	0.20	-	.24	0.20	0.23	0.16	L	0.32	0.27	L
7	_	2006	0.01	0.05	0.40	0.39		0.27	0.17	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
	_	2006	0.01 0.72	0.25	0.46	0.36		0.28	0.17	0.24	0.20		.24 .24	0.20	0.23	0.16	L	0.32	0.27	L
7	30	2006			0.08					0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
7		2006			0.54	0.22		0.27	0.17	0.24	0.20	-	.24	0.20	0.23	0.16	L	0.32	0.27	L
8		2006 2006			0.51	0.33		0.25	0.15	0.24	0.20	-	.24 .24	0.20	0.23	0.16	L L	0.32	0.27	L
8		2006	0.48	0.50	0.68			0.25	0.15	0.24	0.20		.24	0.20	0.23	0.16	L	0.32	0.27	L
8		2006	0.06	0.02	0.62	0.35		0.29	0.18	0.24	0.20	L 0.	.24	0.20	0.23	0.16	L	0.32	0.27	L
8		2006	0.14	0.01	0.02	0.28		0.20	0.13											
8		2006			0.63			0.24	0.16	0.24	0.20		.24	0.20	0.23	0.16	L			
_	8 8 8 9	2006			0.62	0.38		0.26	0.17	0.24	0.20		.24 .24	0.20	0.23	0.16		0.32	0.27	L
8	_	2006			0.02	0.39		0.26	0.16	0.24	0.20		.24	0.20	0.23	0.16	L	0.16	0.14	L
8	3 11	2006			0.65	0.40		0.28	0.18	0.24	0.20	_	.24	0.20	0.23	0.16	L	0.16	0.14	L
_	8 12 8 13	2006 2006			0.64	0.40		0.25	0.15	0.24	0.20	-	.24 .48	0.20	0.23	0.16 0.32	L	0.32	0.27	L
8	3 14	2006				0.37		0.25	0.16	0.24	0.20	L								
8	8 15 8 16	2006 2006	0.08	0.15	0.67	0.39		0.28	0.18 0.16	0.24 0.11	0.20		.24 .24	0.20 0.23	0.23	0.16 0.18				
	3 17	2006			0.65	0.00		0.24	0.15	0.24	0.23		.24	0.23	0.26	0.18	L	0.11	0.10	L
8		2006			0.44	0.35		0.27	0.17	0.24	0.23		.24	0.23	0.26	0.18	L	0.11	0.10	L
_	3 19 3 20	2006	0.20	0.23	0.44	0.30		0.26	0.18	0.24	0.23	-	.24 .24	0.23	0.26	0.18	L L	0.11	0.10	L
8	3 21	2006	0.76	1.27													1			Ц
8		2006		├	0.19	0.19				<u> </u>	\vdash	0	.24	0.23	0.26	0.18				H
8	3 25	2006			0.19	0.20				0.24	0.23	L		5.20	0.20	0.10				Ħ.
_	3 26	2006	0.05	0.05	0.19	0.20				0.24	0.23		.24	0.23	0.26	0.18	Ļ			Ц
8	3 27 3 28	2006 2006	0.93	0.64	0.12	0.13				0.24	0.23	L U.	.24	0.23	0.26	0.18	4			H
ę	9 3	2006	1.16	1.30																
9	9 4	2006 2006	0.52	0.63													_			
	-	2006	1.01	1.10													+			
ę	12	2006	0.56	0.89													1	-		Г
9	20	2006	0.19	0.15							⊢ –	-					+			Н
9	_	2006																		H
_	12	2006										T					Ţ			П
_) 13) 14	2006 2006		\vdash								+					+			H
Ş	9 15	2006															1			Ц.
	17	2006			E 00	5.00	0.50	E 00	E 00	0.00	0.00	<u> </u>	60	2.00	0.00	0.00		0.00	2.00	Ц
	e & At asona	Plant I			5.86 17.36	5.86 12.95	2.52 0.00	5.22 14.74	5.26 9.54	2.20 14.24	2.20 12.47		.60 7.11	2.60 15.30	2.60 16.88	2.60 13.07		2.00 26.10	2.00 23.76	
то	TALS		12.94	13.78	23.22	18.81	2.52	19.96	14.80	16.44	14.67	19	9.71	17.87	19.48	15.67		28.10	25.76	

			Rainfall (ir	nches)	its (inches	s) L = L	EPA irrigatio	on, S = spray	irrigatic	Helms Ir	rigation Amor	unts (inches)	/ L	L = LEP	Helms Irr	rigation Amo	unts (inches	s)	L = LEP	A irrigati	on, S =	spray irriga	ation
					Field 5 -	Field 5 -			Field 5 -	Field 5 -			F	- Field 5	Field 5 -								
			Halfway		D	D			E	E				F	F						1		
	-			Helms @		spans 5-				spans 5-			s		spans 5-							Field 6 -	Field 6 -
_	Da	te	Building	Well 1	4	8	1		4	8			+	4	8			_	A,C,F	B,D,E	DRY	G	H
					Pivot	Pivot			E Cotton	Pivot				Pivot	Pivot		<u> </u>	-ε	Drip Cotton		┝───	Drip Cotton	Drip
Mo	Da	Vr			Cotton	Cotton Base	Base+20%	Base-20%	Collon	Cotton Base	Base+20%	Base-20%	yste	Cotton	Cotton Base	Base+20%	Base-20%	yste	1.0 B.I.	0681		Collon	Cotton
2	_	2006	0.05	0.04		Babb	200012070	2000 2070		5400	500012070	5000 2070	0,		Babb	200012070	Babb 2070			0.0 B			
2	18	2006	0.01	0.01														T					
2		2006	0.01	0.01																			
2	_	2006	0.22	0.20									Ш				L	Щ			L		
3	_	2006	0.41	0.35							ļ		4				<u> </u>	4			┝───	<u> </u>	
3		2006 2006	0.59	0.52 0.25						<u> </u>			H					+					+
3		2000	0.23	0.20									H					+					
3		2006	0.10	0.17														Ħ					
4		2006											П					\square					
4		2006			0.50	0.50	0.50	0.50	0 0 50	0.50	0.50	0.50		0.50	0.50	0.50			0.07	0.07	0.07	0.17	0.05
4		2006 2006			0.50	0.50	0.50	0.50	S 0.50	0.50	0.50	0.50	S	0.50	0.50	0.50	0.50	S	0.07	0.07	0.07	0.17 0.15	0.25 0.13
4		2006	1.09	0.81	1				1				H				<u> </u>	Ħ	0.14	0.14	0.14	0.15	0.13
4		2006				İ			1				ĽТ					Ħ	0.12	0.12	0.12	0.12	0.13
4		2006											Д		_			\square	0.12	0.12	0.12	0.12	0.13
4		2006	0.06	0.06	4.55		4.55	1.00						4.65	4.00			1	0.12	0.12	0.12	0.12	0.13
4	_	2006			1.00	1.00	1.00	1.00	S 1.00	1.00	1.00	1.00	S	1.00	1.00	1.00	1.00	S	0.10	0.10	0.10	0.12	0.13
4	25	2006											\square						0.13	0.13 0.11	0.13 0.11	0.12 0.12	0.13 0.13
4		2000			1								Ħ				<u> </u>	1	0.08	0.08	0.08	0.12	0.13
4	28	2006											П] [0.08	0.08	0.08	0.12	0.13
4		2006											П] [0.08	0.08	0.08		0.13
4	30	2006											Ш				L	Щ	0.08	0.08	0.08		0.13
5		2006									ļ		4				<u> </u>	4	0.14	0.14	0.14	0.12	0.12
5		2006								┢────┘	┟────┦		\vdash				├───	+	0.09	0.09	0.09 0.13	0.12	0.13 0.12
5		2000	0.05	0.05									H				<u> </u>	+	0.13	0.13	0.13	0.12	0.12
5	5	2006	0.15	0.22																		0.11	
5		2006											П					\square					
5		2006								<u> </u>	ļ		4				<u> </u>	+	0.02	0.02	0.02	<u> </u>	
5		2006 2006											⊢⊢				<u> </u>	+	0.03	0.03	0.03	<u> </u>	
5		2000			0.30	0.30	0.30	0.30	S 0.30	0.30	0.30	0.30	s	0.30	0.30	0.30	0.30	s				<u> </u>	
5		2006			0.30	0.30	0.30	0.30	S 0.30	0.30	0.30	0.30		0.30	0.30	0.30	0.30	S					
5		2006			0.25	0.25	0.25	0.25	S 0.25	0.25	0.25	0.25	S	1.00	1.00	1.00	1.00	S					
5		2006									 		Щ.				L	Щ	0.15	0.15	0.15	0.04	0.34
5		2006			0.25	0.25	0.25	0.25	S 0.25	0.25	0.25	0.25	s	2.00	2.00	2.00	2.00		0.19	0.19	0.19	0.01 0.24	0.01 0.25
5		2006	0.18	0.10	0.25	0.25	0.25	0.25	5 0.25	0.25	0.25	0.25	3	2.00	2.00	2.00	2.00	- 3	0.22	0.22	0.22	0.24	0.25
5		2006	0.10	0.10															0.20	0.20	0.20	0.19	0.20
5	23	2006																	0.24	0.24	0.24	0.24	0.25
5		2006											Ш					Ш	0.21	0.21	0.21	0.24	0.25
5		2006	0.10	0.24	-					'	ļļ		4				 		0.29	0.29	0.29	0.23	0.25
5	_	2006	0.19	0.24						┢────┘	┟────┦		\vdash				├───	+	0.16	0.16	0.16 0.27	0.23 0.23	0.25 0.25
5		2006			1.00	1.00	1.00	1.00	S 1.00	1.00	1.00	1.00	s	0.50	0.50	0.50	0.50	s	0.23	0.23	0.23	0.23	0.25
5		2006											亡					ť	0.17	0.17	0.17	0.23	0.25
5		2006											ЦĒ				\vdash	Ц				\vdash	\square
5	_			0.96					-	<u> </u>	ļ!		\vdash				┝───	╄┤			 	┝───	\vdash
6		2006 2006	0.17	0.17						┝───┤		┝───┤	\vdash				┝───	+			<u> </u>	┝───	──┤
6		2006			1.00	1.00	1.00	1.00	S 1.00	1.00	1.00	1.00	s				<u> </u>	╋			<u> </u>	<u> </u>	+
6		2006			1.00	1.00	1.00	1.00	S 1.00	1.00	1.00		s					Ħ					
6	12	2006											Д		_			\square	0.31	0.10		0.32	0.04
6		2006								L			H				L	Ť	0.21	0.12			0.27
6		2006			0.75	0.75	0.75	0.75	S 0.75	0.75	0.75	0.75	S	0.75	0.75	0.75	0.75	S	0.36	0.22	<u> </u>	0.30	0.25 0.36
6		2006			+				1	<u> </u>			H				<u> </u>	+	0.20	0.25		0.33	0.36
6		2000			1								Ħ				t	†	0.20	0.10		1	0.00
6	18	2006											\square	0.50	0.50	0.50	0.50	S					
6		2006											ĻĽ					Ц	0.38	0.20	<u> </u>	0.31	0.22
6		2006	0.00	0.00	0.22	0.18	0.21	0.15	L 0.22	0.18	0.21	0.15	L	0.22	0.18	0.21	0.15	L	0.39	0.25	┝───	0.33	0.36
6		2006	0.39	0.22 0.21						<u> </u> '		<u> </u>	\vdash				┝───	+	0.37	0.22	┝───	0.30	0.30
6		2006	0.00	V.2 I	0.24	0.20	0.23	0.16	L 0.24	0.20	0.23	0.16	L				<u> </u>	╉	0.00	0.10		0.02	0.22
		2006						2.10	1				Ħ					†					
6	24		0.02	0.02														⋣					
6	25	2006																1 I	0.00	0.00			0.04
6	25 26	2006	0.02	0.16		0.55	0.55			0.00	0.00	0.12	L	0.01	0.00	0.00	0.10	- ,	0.38	0.23	ļ	0.32	0.24
6 6	25 26	2006 2006	0.11	0.16	0.24	0.20	0.23 0.23	0.16	L 0.24 L 0.24	0.20	0.23 0.23	0.16 0.16		0.24 0.24	0.20	0.23 0.23	0.16	Ļ	0.38	0.23		0.32 0.32 0.31	0.24 0.33 0.32

Rainfall (inches) ts (inches) L = LEPA irrigation, S = spray irrigation Helms Irrigation Amounts (inches) L = LEP Helms Irrigation Amounts (inches) L = LEPA irrigation, S = spray irrigation

	Rainfall (in	iches)	its (inches	s) L = L	EPA irrigatio	on, S = spray i	rrigatic	Helms Ir	rigation Amo	ounts (inches))	L = LEP	Helms In	rigation Amo	unts (inches	5)	L = LEF	PA irrigati	on, S = :	spray irriga	ation
			Field 5 -	Field 5 -			Field 5 ·	Field 5 -				Field 5 -	Field 5 -								
	Halfway @	Helms @	D spans 2-	D spans 5-				E spans 5					F spans 5-				Field 6	Field 6		Field 6 -	Field 6 -
Date	Building	Well 1	4 Pivot	8 Pivot	1	<u> </u>	4 Pivot	8 Pivot	1			4 Pivot	8 Pivot			T	A,C,F Drip	B,D,E	DRY	G Drip	H Drip
			Cotton	Cotton		E C	Cotton	Cotton			tem	Cotton	Cotton			tem	Cotton			Cotton	Cotton
Mo Da Yr				Base	Base+20%	Base-20%	cíc	Base	Base+20%		sys		Base	Base+20%	Base-20%	sys	1.0 B.I.	0.6 B.I.			
6 29 2006 6 30 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.38	0.23		0.30	0.33
7 1 2006			0.24	0.20	0.25	0.10	0.24	0.20	0.23	0.10		0.24	0.20	0.25	0.10	ľ					
7 2 2006																					
7 3 2006 7 4 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24 0.24	0.20	0.23	0.16		0.37	0.23		0.30	0.31 0.33
7 5 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.39	0.25		0.32	0.36
7 6 2006 7 7 2006	0.09	0.07	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L					
7 7 2006 7 8 2006	0.10	0.60	-													+					
7 10 2006	0.01	0.06															0.37	0.32		0.03	0.33
7 11 2006 7 12 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	H	0.24	0.20	0.23	0.16		0.36	0.15		0.32	0.33 0.18
7 13 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.38	0.20		0.30	0.18
7 14 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.38	0.25		0.33	0.36
7 15 2006 7 16 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.38	0.24		0.31	0.32
7 17 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.00	0.24		0.01	0.02
7 18 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L		[
7 19 2006 7 20 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16		0.24	0.20	0.23	0.16	L	0.38	0.23		0.30	0.33
7 21 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	Ē	0.24	0.20	0.23	0.16	L	0.39	0.25		0.34	0.36
7 22 2006	0.08	0.06	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.39	0.25		0.34	0.36
7 23 2006 7 24 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.36	0.21 0.24		0.28	0.28 0.33
7 25 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.37	0.23		0.30	0.32
7 26 2006 7 27 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.36	0.18		0.30	0.22
7 28 2006	0.01	0.25	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.39	0.23		0.33	0.36 0.32
7 29 2006	0.72	0.88	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L					
7 30 2006 7 31 2006			0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.26	0.13		0.19	0.28
8 1 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.20	0.09		0.19	0.28
8 2 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.22	0.16	L	0.32	0.18		0.15	0.32
8 3 2006 8 4 2006	0.48	0.50	0.24	0.20	0.23	0.16 L 0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.22	0.16	L	0.37	0.23		0.29 0.34	0.33 0.37
8 5 2006	0.00	0.02	0.24	0.20	0.25	0.10	0.24	0.20	0.23	0.10		0.24	0.20	0.22	0.10	F	0.57	0.20		0.54	0.57
8 6 2006			_													_					
8 7 2006 8 8 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16		0.24	0.20	0.23	0.16	H	0.37	0.22 0.24		0.29 0.33	0.22 0.33
8 9 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.37	0.23		0.29	0.33
8 10 2006			0.24	0.20	0.23	0.16 L		0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.37	0.23		0.32	0.33
8 11 2006 8 12 2006			0.48	0.40	0.46 0.23	0.32 L 0.16 L	0.24	0.40	0.46	0.32 0.16	L	0.24	0.40	0.46	0.32	L					
8 13 2006			0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L					
8 14 2006 8 15 2006	0.08	0.15	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.16	L	0.24	0.20	0.23	0.16	L	0.38	0.24 0.25		0.33	0.34 0.37
8 16 2006	0.06	0.15	0.24	0.20	0.23	0.16 L	0.24	0.20	0.23	0.18	L	0.24 0.11	0.20	0.23	0.16	L	0.39	0.23		0.33	0.37
8 17 2006			0.24	0.23	0.26	0.18 L	0.24	0.23	0.26	0.18	L	0.24	0.23	0.26	0.18	L	0.37	0.23		0.31	0.31
8 18 2006 8 19 2006			0.24	0.23	0.26	0.18 L 0.18 L	0.49	0.45	0.52	0.36		0.24	0.23	0.26	0.18	L					
8 20 2006	0.20	0.23	0.24	0.23	0.26	0.18 L		0.40	0.02	0.00		0.24	0.23	0.26	0.18	Ĺ					
8 21 2006	0.76	1.27					+				П					ſ	0.00	0.10		0.04	0.01
8 23 2006 8 24 2006			+				+				\mathbb{H}					+	0.22	0.13		0.01 0.19	0.24 0.19
8 25 2006							0.24	0.23	0.26	0.18	L	0.24	0.23	0.26	0.18	L	0.20	0.13		0.18	0.19
8 26 2006	0.05	0.05	0.49	0.45	0.52	0.36 L	0.24	0.23	0.26	0.18	L	0.24	0.23	0.26	0.18	L	0.20	0.13		0.18	0.19
8 27 2006 8 28 2006	0.93	0.64	+				0.24	0.23	0.26	0.18	L	0.24	0.23	0.26	0.18	L	0.15	0.09		0.18	0.18
9 3 2006	1.16	1.30							-				-	-	-	t					
9 4 2006 9 6 2006		0.63	+			├		<u> </u>			Н					+]
9 6 2006 9 11 2006		0.05	+				+	<u> </u>			H			1		$^{+}$					
9 12 2006	0.56	0.89									Ц					L					
9 20 2006 9 10 2006	0.19	0.15	+								Η					+					┝──┤
9 10 2006			+			<u>├</u>	1			†	Η					+					<u> </u>
9 12 2006											Ц					ľ					
9 13 2006 9 14 2006		⊢ -				\vdash		<u> </u>			H					+		<u> </u>			<u> </u>
9 15 2006											Ħ					t					
9 17 2006											Π			_		Γ					
Pre & At Plant Seasonal			2.35 15.66	2.35 13.99	2.35 15.43	2.35 11.97	2.35 15.90	2.35 14.22	2.35 15.69	2.35 12.15		3.10 15.52	3.10 13.87	3.10 15.33	3.10 11.83		4.50 16.99	4.50 10.35	4.50 0.00	4.32 13.22	5.09 14.43
TOTALS	12.94	13.78	18.01	16.34	17.78	14.32	18.25	16.57	18.04	14.50		18.62	17.14	18.48	14.96		21.49	14.85	4.50	17.54	19.52

Year	2006		
Farm	Helm		
Field ID	Field 1	Corn Hybrids for Drought Tolerance Xu	
Exp. Design	5 zones, 2	24 rows x 1300' plots, 40" row width	
Soil Type			
Field Operations	Date	Activity	
Tillage	3/2	List	Field 1
	3/3	Rolling cultivator	
			Ν
			ZAC
			(and)
Fertility	4/10	applied commercially	
Diantin a			
Planting			
Herbicide/Growth	5/1	22 oz/a Roundup	
Regulator	5/1	48 oz/a Atrazine	
Insecticide			
Harvest aid			
Irrigation Amt.			
PrePlant & Planting			
Seasonal			
Rainfall			
PrePlant & Planting Seasonal			
Total			

Year	2006
Farm	Helm
Field ID	Field 2 Drip Cotton Management Bordovsky, Gannaway, Parajulee
Exp. Design	Management (high input vs sustainable); Insect Control; Cotton Varieties, 4 reps, 16 row x 1300' plots
Soil Type	

Tillage	3/6	Listed 60" Beds	Field 2
5			A
	5/10	Rotary Hoe	N N
	6/2	Rotary Hoe	(-4)
	6/14	Furrow Dike	
Fertility	4/11	85 lbs/a P2O5 (10-34-0) and 25 lbs/a N (32-0-0) with coulte	
	5/26	60 lbs/a N (32-0-0) with coulter rig for High, Low and Dry Irr.	
	6/5	1.5 lbs/a Zn, 1.5 lbs N, and 0.3 lbs S for High and Low Irr. (In	
	6/22	1.5 lbs/a Zn, 1.5 lbs N, and 0.3 lbs S for High and Low Irr. (In	ijected into drip lines)
	6/27-8/3	76 lbs/a N (32-0-0) for Low Irr. (Injected into drip lines)	
Diantina	6/27-8/6	109 lbs/a N (32-0-0) for High Irr. (Injected into drip lines)	
Planting	5/3	989 B2R on East Rows of Each Plot; PM2200 BB on West 8	Rows of Each Plot
	5/11	989 B2R	
Herbicide/Growth	4/27	Roundup 22oz/a	
Regulator	4/27	Prowl 32oz/a	
- 3	5/5	Caporal 32 oz/a	
	6/14	Pentia 8oz/a on High Irr. only	
	7/11	Pentia 8oz/a on High Irr. only	
	7/19	Glystar 32oz/a directed	
	7/24	Pentia 8oz/a on High Irr. only	
Insecticide	5/3	Temik	
Insecticide	5/3	Temik	
Harvest aid	9/18	3oz Ginstar, 3pt Cottonquick on Dryland	
	9/29	12oz Gramoxone Max on Dryland	
gation Amt.			
rePlant & Planting	4/17-5/29	Dry 2.52 in. Low 5.86 in. High 5.86 in.	
easonal	5/30-8/27	Dry 0.0 Low 12.95 in. High 17.36 in.	
infall			
rePlant & Planting	1/1 - 5/3	2.52 in.	
easonal	5/3 - 9/30	11.20 in.	
	h	1	

Year	2006		
Farm	Helm	_	
Field ID		SDI Design Bordovsky	
Exp. Design	Drip Irrigati	on Design(3 levels of drip uniformity) x Irrigation Capacity (2 levels), 4 reps, 16 row x 1300'	
Soil Type			
Field Operations	Date	Activity	
Tillage		Field 3	
0	3/2	List	
	5/10	Rotary Hoe	
		N	
	6/14	Furrow Dike	
Fertility			
rennity	5/26	60 lbo/o N (22.0.0) with coulter rig for High and Low Irr	
	5/26 7/7-8/3	60 lbs/a N (32-0-0) with coulter rig for High and Low Irr. 76 lbs/a N(32-0-0) for Low Irr. (Injected into drip lines)	
	7/6-8/7	109 lbs/a N (32-0-0) for High Irr. (Injected into drip lines)	
Dianting	E/2		
Planting	5/3	FM 989 B2R 56,000 seed/a	
	4/27	Poundun 22 oz/o	
Herbicide/Growth	4/27	Roundup 22 oz/a	
Regulator	4/27 5/5	Prowl 2qt/a Caporal broadcast 32 oz/a	
		Pentia 8oz/a	
	7/11		
	7/19	Glystar 32oz/a directed	
la e esti d'al s	E /2		
Insecticide	5/3	Temik 3 lbs/a	
	10/2	24az Bran, 42az Daf	
Harvest aid	10/2	21oz Prep, 13oz Def	
Irrigation Amt.			
PrePlant & Planting	4/17-5/29	High 5.22 in. Low 5.26in.	
Seasonal	6/12-8/20	High 14.74in. Low 9.54in.	
Coulonia	0,12 0,20		
Rainfall			
PrePlant & Planting	1/1 - 5/3	2.52 in.	
Seasonal	5/3 - 9/30	11.20 in.	

Year	2006			
Farm	Helm			
Field ID	Field 5a Spa	ans 5-8		
Exp. Design				
Soil Type				
Field Operations	Date	Activity		
Tillage	3/27	list	Field 5A	
0				
	6/8	Cultivated		
	6/9	Diked	N	
			$\left(-\frac{1}{2} \right)$	
Fertility	4/7-4/10	65 lbs/a P2O5 (10-34-0) and 19 lbs/a N (32-0-0) with co	oulter rig	
·	5/23	60 lbs/a N (32-0-0) with coulter rig		
	6/28 - 6/29	15.6 lbs/a of N (32-0-0) through Pivot		
	7/12 - 7/14	19.38 lbs/a of N (32-0-0) through Pivot		
	7/18 - 7/20	11.19 lbs/a of N (32-0-0) through Pivot		
	7/21 - 7/25	17.6 lbs/a of N (32-0-0) through Pivot		
	7/27	3.2 lbs/a of N (32-0-0) through Pivot		
Planting	5/10	14 Varieties @ 56,000 seed/a (Spans 5-8)		
	5/17	Varieties (Spans 2-7)		
Herbicide/Growth	4/25	Roundup 22 oz/a		
Regulator	4/25	Prowl 48 oz/a		
	6/5	Glystar 32 oz/a		
Insecticide				
Harvest aid	L			
Irrigation Amt.				
PrePlant & Planting	4/18-5/18	2.2 in.		
Seasonal	5/19-8/27	12.47in.		
Rainfall				
	A /A 5/47	0.70.5		
PrePlant & Planting	1/1 - 5/17	2.79 in.		
Seasonal	5/10 - 9/30	10.93 in.		

Year	2006	_		
Farm	Helm			
Field ID	Field 5a Spa	ans 2-4		
Exp. Design				
Soil Type				
Field Operations	Date	Activity		
Tillage	3/27	list	Field 5A	
0				
	6/8	Cultivated		
	6/9	Diked	N	
Fertility	4/7-4/10	65 lbs/a P2O5(10-34-0)and 19 lbs/a N(32-0-0)with co	oulter rig	
-	5/23	60 lbs/a N (32-0-0) with coulter rig		
	6/28 - 6/29			
	7/12 - 7/14	23.3 lbs/a of N (32-0-0) through Pivot		
	7/18 - 7/20	13.4 lbs/a of N (32-0-0) through Pivot		
	7/21 - 7/25	21.1 lbs/a of N (32-0-0) through Pivot		
	7/27	3.84 lbs/a of N (32-0-0) through Pivot		
Planting	5/10	14 Varieties @ 56,000 seed/a (Spans 5-8)		
	5/17	Varieties (Spans 2-7)		
Herbicide/Growth	4/25	Roundup 22 oz/a		
Regulator	4/25	Prowl 48 oz/a		
	6/5	Glystar 32 oz/a		
Insecticide				
	L			
Harvest aid	L			
Irrigation Amt.				
PrePlant & Planting 4/18-5/18 2.2 in.				
Seasonal	5/19-8/27	14.74 in.		
Rainfall				
	A /A 5/47	0.70 :=		
PrePlant & Planting	1/1 - 5/17	2.79 in.		
Seasonal	5/10 - 9/30	10.93 in.		

Year	2006	_		
Farm	Helm			
Field ID	Field 5b Spa	ans 5-8		
Exp. Design				
Soil Type				
Field Operations	Date	Activity		
Tillage	3/27	list	Field 5B, S5-8	
	6/8	Cultivated (Span 8)		
	6/9	Diked (Span 8)	N	
			\neg	
Fertility	4/7-4/10	65 lbs/a P2O5 (10-34-0) and 19 lbs/a N (32-0-0) with coulter rig		
	5/23	60 lbs/a N (32-0-0) with coulter rig		
	6/28 - 6/29	Base=15.6 lbs/a N, +20%=16.34 lbs/a N, -20%=11.38 lbs/a N (32-0-0) through Pivot		
	7/12 - 7/14	Base=19.38 lbs/a N, +20%=20.28 lbs/a N, -20%=14.16 lbs/a N (32-0-0) through Pivot		
	7/18 - 7/20	Base=11.19 lbs/a N, +20%=11.73 lbs/a N, -20%=8.16 lbs/a N (32-0-0) through Pivot		
	7/21 - 7/25	Base=17.6 lbs/a N, +20%=18.45 lbs/a N, -20%=12.85 lbs/a N (32-0-0) through Pivot		
	7/27	Base=3.2 lbs/a N, +20%=3.35 lbs/a N, -20%=2.34 lbs/a N (32-0-0) through Pivot		
Planting	5/10	FM 989 B2R (Spans 2-7)	0	
. iaining	5/12	Varieties (Span 8)		
Herbicide/Growth	4/25	Roundup 22 oz/a		
Regulator	4/25	Provil 48 oz/a		
	6/3	Roundup 1 qt/a		
	5/16	Ignite		
	5/13	RU 1 qt/a (Span 8)		
	5/13	Caporal 3 pt/a (Span 8)		
	7/12	Glystar 32oz/a directed		
	7/13	Pentia 8oz/a on 1.0 and 1.25 Irrigated		
Insecticide	6/3	Acephate 3.2 oz/a		
Harvest aid				
Irrigation Amt.				
PrePlant & Planting	4/18-5/18	2.60 in.		
Seasonal	5/19-8/27	Base = 15.30 in., +20% = 16.88 in., -20% = 13.07 in.		
Rainfall				
PrePlant & Planting	1/1 - 5/12	2.79 in.		
Seasonal	5/10 - 9/30	10.93 in.		
254001141	3,10 0,00			

Year	2006			
Farm	Helm			
Field ID	Field 5b Spa	ans 2-4		
Exp. Design				
Soil Type				
Field Operations	Date	Activity		
Tillage	3/27	List	Field 5B, S2-4	
rinago	0/21			
	6/8	Cultivated (Span 8)	\neg \uparrow \uparrow \mid \mid \mid \mid \mid \mid	
	6/9	Diked (Span 8)	N	
Fertility	4/7-4/10	65 lbs/a P2O5 (10-34-0) and 19 lbs/a N (32-0-0) with coulter rig		
-	5/23	60 lbs/a N (32-0-0) with coulter rig		
	6/28 - 6/29	18.7 lbs/a of N (32-0-0) through Pivot		
	7/12 - 7/14			
	7/18 - 7/20	13.4 lbs/a of N (32-0-0) through Pivot		
	7/21 - 7/25	21.1 lbs/a of N (32-0-0) through Pivot		
	7/27	3.84 lbs/a of N (32-0-0) through Pivot		
Planting	5/10	FM 989 B2R (Spans 2-7)		
	5/12	Varieties (Span 8)		
Herbicide/Growth	4/25	Roundup 22 oz/a		
Regulator	4/25	Prowl 48 oz/a		
	6/3	Roundup 1 qt/a		
	5/16	Ignite		
	5/13	RU 1 qt/a (Span 8)		
	5/13	Caporal 3 pt/a (Span 8)		
	7/12	Glystar 32oz/a directed		
	7/13	Pentia 8oz/a on 1.0 and 1.25 Irrigated		
Insecticide	6/3	Acephate 3.2 oz/a		
Lienvest sid				
Harvest aid				
Irrigation Amt.				
PrePlant & Planting	4/18-5/18	2.60 in.		
Seasonal	4/18-5/18 5/19-8/27	17.11in.		
JEASUIAI	0/18-0/27			
Rainfall				
PrePlant & Planting	1/1 - 5/10	2.79 in.		
Seasonal	5/10 - 9/30	10.93 in.		
Couoma	3,10 0,00			

Year	2006			
Farm	Helm	-		
Field ID	Field 5c Spa	ans 5-8		
Exp. Design				
Soil Type				
Field October	Data	A set to a		
Field Operations	Date	Activity		
Tillage		Field 5C, S5-8		
		N		
	5/18	Cultivated N		
	6/8	Cultivated (Spans 5-8)		
	5/18	Diked		
Fertility	4/7-4/10	65 lbs/a P2O5(10-34-0)and 19 lbs/a N(32-0-0)with coulter rig		
		114.5 lbs/a P2O5 (10-34-0) and 34 lbs/a N (32-0-0) with coulter rig		
	5/18	100 lbs/a of N (32-0-0) with coulter rig		
	6/24 -6/25	41 lbs/a (32-0-0) through the Pivot		
	6/27-6/30	53 lbs/a (32-0-0) through the Pivot		
	7/5-7/6	26 lbs/a (32-0-0) through the Pivot		
	7/10	4 lbs/a (32-0-0) through the Pivot		
Planting				
Tianing	4/20	Corn 32,000 seed/a		
	4720			
	4/24	Harness 1.8 qt/a		
Herbicide/Growth Regulator	4/24	Roundup 22 oz/a		
Regulator	7/27			
Insecticide				
Insecticide				
Llongest				
Harvest aid				
Irrigation Amt				
Irrigation Amt.				
PrePlant & Planting	4/14	2.00 in.		
Seasonal	4/15-8/20	23.76 in.		
Rainfall				
PrePlant & Planting	1/1 - 4/19	1.65 in.		
Seasonal	4/19 - 9/30	12.07 in.		

Year	2006
Farm	Helm
Field ID	Field 5c (Spans 2-4)
Exp. Design	
Soil Type	

Date

Field Operations Tillage Activity

5/18	Cultivated
6/8	Cultivated (Spans 5-8)
5/18	Diked

Year	2006	_	
Farm	Helm	-	
Field ID	Field 5de (S	pans 5-8)	
Exp. Design			
Soil Type			
Field Operations	Date	Activity	
Tillage	3/27	List	Field 5DE, S5-8
	5/19	Scratched	N
	6/8	Cultivated (5e)	
	6/14	Diked	
Fertility	4/4-4/7	69 lbs/a P2O5 (10-34-0) and 21 lbs/a N (32-0-0) with coulter rig	
	5/25	60 lbs/a N with coulter rig (32-0-0)	
	6/28 - 6/29	Base=15.6 lbs/a N, +20%=16.34 lbs/a N, -20%=11.38 lbs/a N (32-0-0) through Pivot
	7/12 - 7/14	Base=19.38 lbs/a N, +20%=20.28 lbs/a N, -20%=14.16 lbs/a N (32-0-0) through Pivot	
	7/18 - 7/20	Base=11.19 lbs/a N, +20%=11.73 lbs/a N, -20%=8.16 lbs/a N (32-0-0) through Pivot	
	7/21 - 7/25	Base=17.6 lbs/a N, +20%=18.45 lbs/a N, -20%=12.85 lbs/a N (32-0-0) through Pivot	
	7/27	Base=3.2 lbs/a N, +20%=3.35 lbs/a N, -20%=2.34 lbs/a N (32-0-0) th	nrough Pivot
Planting	5/8	FM 989 B2R on outside 8 rows, then alternated with 960 through to Span 4	
Herbicide/Growth	4/20	Prowl 2 qt/a (5e)	
Regulator	4/24	Prowl 2 qt/a (5d)	
	5/16	Ignite	
	5/19	Glystar 1 qt/a (5d)	
	5/24	Glystar 1 qt/a (5e)	
	6/8	Roundup Weather Max 32 oz/a	
	7/10	Glystar 32oz/a directed	
La constatata	7/14	Pentia 8oz/a on 1.0 and 1.2 Irrigated	
Insecticide	5/8	Temik 3 lbs/a	
	6/8	Acephate 3.2 oz/a	
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a	
naivest alu	10/20		
Irrigation Amt.		<u> </u>	
PrePlant & Planting	4/18-5/17	2.35 in.	
Seasonal	5/18-8/26	On area "d" - Base = 13.99 in., +20% = 15.43 in., -20% = 11.97 in.	
	5/18-8/26	On area "e" - Base = 14.22 in., +20% = 15.69 in., -20% = 12.15 in.	
Rainfall			
PrePlant & Planting	1/1 - 5/8	2.79 in.	
Seasonal	5/8 - 9/30	10.93 in.	

Year	2006
Farm	Helm
Field ID	Field 5de (Spans 2-4)
Exp. Design	
Soil Type	

Field Operations	Date	Activity	
Tillage	3/27	List	Field 5DE, S5-8
		Tillage Treatments Described in Reports	
Fertility	4/4-4/7	69 lbs/a P2O5(10-34-0)and 21 lbs/a N(32-0-0)with coulter r	ia
rentinty	4/4-4/7	60 lbs/a N with coulter rig (32-0-0)	ig
	6/29 - 6/30		
		18.7 lbs/a of N (32-0-0) through Pivot	
	7/12 - 7/14	23.3 lbs/a of N (32-0-0) through Pivot	
	7/18 - 7/20	13.4 lbs/a of N (32-0-0) through Pivot	
	7/21 - 7/25	21.1 lbs/a of N (32-0-0) through Pivot	
	7/27	3.84 lbs/a of N (32-0-0) through Pivot	
Planting	5/11	FM 989 B2R	
	0/04	Devel 0 et/e	
	3/24	Prowl 2 qt/a	
Herbicide/Growth	5/12	RU 2 qt/a	
Regulator	5/12	Caporal 1 qt/a	
	6/8	RU 32 oz/a	
	7/10	Glystar 32oz/a directed	
	8/1	Pentia 8oz/a	
Insecticide	6/8	Acephate 3.2 oz/a	
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a	
rigation Amt.			
PrePlant & Planting	4/18-5/17	2.35 in.	
Seasonal	5/18-8/26 5/18-8/26	On area "d" - 15.66 in.	
ainfall	3/10-0/20	On area "e" - 15.90 in.	
PrePlant & Planting	1/1 - 5/11	2.79 in.	
Seasonal	5/12 - 9/30	10.93 in.	

Year	2006		
Farm Field ID	Helm Field 5f (Spans 5-8)		
Exp. Design		ans 5°0)	
Soil Type			
Field Operations	Date	Activity	Field 5DE, S5-8
Tillage	3/27	List	
	5/15	Scratched	
	6/8	Cultivated	$-\sqrt{7}$
	6/9	Diked	
Fertility	4/4-4/7	69 lbs/a P2O5 (10-34-0) and 21 lbs/a N (32-0-0) with coulter rig	
·	5/19	60 lbs/a N with coulter rig (32-0-0)	
	6/29 - 6/30	Base=15.6 lbs/a N, +20%=16.34 lbs/a N, -20%=11.38 lbs/a N (32-0-0) through Pivot	
	7/12 - 7/14	Base=19.38 lbs/a N, +20%=20.28 lbs/a N, -20%=14.16 lbs/a N (32-0-0) through Pivot	
	7/18 - 7/20	Base=11.19 lbs/a N, +20%=11.73 lbs/a N, -20%=8.16 lbs/a N (32-0-0) through Pivot	
	7/21 - 7/25	Base=17.6 lbs/a N, +20%=18.45 lbs/a N, -20%=12.85 lbs/a N (32-0-0) through Pivot	
	7/27	Base=3.2 lbs/a N, +20%=3.35 lbs/a N, -20%=2.34 lbs/a N (32-0-0) through Pivot	
Planting	5/8	4 varieties in water treatments @ 56,000 seeds/a	
Flanting	5/6	4 varieties in water treatments @ 50,000 seeds/a	
	4/20	Provid 2 at/a	
Herbicide/Growth	4/20 6/3	Prowl 2 qt/a	
Regulator		Glystar 1 qt/a Glystar 32oz/a directed	
	7/11		
	7/13	Pentia 8oz/a on 1.25 Water Treatment	
Insecticide	5/8	Temik 3 lbs/a	
	6/3	Acephate 3.2 oz/a	
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a	
rrigation Amt.			
PrePlant & Planting	4/18-5/17	3.10 in.	
Seasonal	5/18-8/26	Base = 13.87 in., +20% = 15.33 in., -20% = 11.83 in.	
Rainfall			
PrePlant & Planting	1/1 - 5/8	2.79 in.	
Seasonal	5/8 - 9/30	10.93 in.	

Year	2006			
Farm	Helm			
Field ID	Field 5f (Sp	ans 2-4)		
Exp. Design				
Soil Type				
Field Operations	Date	Activity		
Tillage	3/27	List	Field 5DE, S2-4	
-				
	5/15	Scratched	N	
	6/8	Cultivated	(-51)	
	6/9	Diked	$\sqrt{7}$	
E - atility	A/A A/7			
Fertility	4/4-4/7	69 lbs/a P2O5 (10-34-0) and 21 lbs/a N (32-0-0) with coulter rig		
	5/19	60 lbs/a N with coulter rig (32-0-0)		
	6/29 - 6/30			
		23.3 lbs/a of N (32-0-0) through Pivot		
	7/18 - 7/20			
	7/21 - 7/25	21.1 lbs/a of N (32-0-0) through Pivot		
	7/27	3.84 lbs/a of N (32-0-0) through Pivot		
Planting	5/4	ST 4892 BR @ 56,000 seeds/a		
Herbicide/Growth	4/20	Prowl 2 qt/a		
Regulator	6/3	Glystar 1 qt/a		
	7/11	Glystar 32oz/a directed		
	7/17	Pentia 8oz/a		
	8/1	Pentia 8oz/a		
Insecticide	5/4	Temik 3 lbs/a		
	6/3	Acephate 3.2 oz/a		
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a		
Irrigation Amt.				
PrePlant & Planting	4/18-5/17	3.10 in.		
Seasonal 5/18-8/26 15.52 in.				
Rainfall				
PrePlant & Planting	1/1 - 5/4	2.57 in.		
Seasonal	5/5 - 9/30	11.15 in.		
Cousonai	5/0 5/00			

ear	2006		
arm	Helm		
eld ID	Field 6 - Zo	ne A-F evel x Variety x Plant Population Keeling/Bordovsky	
к <u>р. D</u> esign oil Type	Collon In L	ever x variety x Plant Population Reening/Bordovsky	
eld Operations	Date	Activity	
Tillage	3/7	Stalk puller	Field 6A-F
	3/27	List	
			N
	6/15	Diked	
Fertility	4/12-4/13	77.0 lbs/a P2O5 (10-34-0) and 23 lbs/a N (32-0-0) with coulter r	g
	5/30	60 lbs/a of N (32-0-0) with coulter rig for High, Low and Dry Irr.	
	6/19-7/29	56 lbs/a of N (32-0-0) for Low Irr. (Injected into drip lines)	
	6/19-8/2	87 lbs/a of N (32-0-0) for High Irr. (Injected into drip lines)	
Planting	5/2,3	Four Flex Varieties at 3 populations	
Herbicide/Growth	4/27	Roundup 22 oz/a	
Regulator	4/27	Provil 2 qt/a	
0	6/5	Roundup 1 qt/a	
	7/12	Pentia 8oz/a in a, c, f and g	
	.,		
Insecticide	5/2	Temik 3 lbs/a	
mootiolde	0/2		
Honyootaid	10/20	Cromovono Intoon 16 oz/o Aim 1 oz/o	
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a	
instion Amt			
igation Amt.			
PrePlant & Planting 4/18-5/29 High, Low and Dry 4.50 in.			
-	6/12-8/27	High 16.99 in. Low 10.35 in. Dry 0.0 in.	
Seasonal			
Seasonal			
Seasonal	4/4 5/0	0.50 in	
Seasonal	1/1 - 5/2 5/2 - 9/30	2.52 in. 11.20 in.	

Year	2006				
Farm	Helm				
Field ID	Field 6 - Zone G Cotton Drip Irrigated Nitrogen Level Effects on Insects Parajulee				
Exp. Design	Several Nitrogen Levels, Replicated				
Soil Type					
Field Operations	Date	Activity			
Tillage	3/7	Stalk puller Field 6G			
Ū					
		N			
	6/27	Diked			
Fertility	4/14	68 lbs/a P2O5(10-34-0)and 20 lbs/a N(32-0-0)with coulter rig			
T Ortinty					
	6/26	Fertilzier treaments see report			
	0/20				
Planting	5/4	PM 2379RR at 56,000 ppa			
rianning	5/4				
	4/27	Roundup 22 oz/a			
Herbicide/Growth Regulator	4/27				
Regulator	4/27 5/5	Prowl 2 qt/a Caporal broadcast 32 oz/a			
	6/5				
	0/0	Roundup 1 qt/a			
Incontininte					
Insecticide					
Homeostaid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a			
Harvest aid	10/20				
rrigation Amt.					
PrePlant & Planting	4/18-5/29	4.32in.			
-					
Seasonal	6/12-8/27	13.22in.			
Rainfall					
PrePlant & Planting	1/1 - 5/4	2.57 in.			
Seasonal	5/4 - 9/30	11.15 in.			
JEASUIA	5,4 5,50				

Year	2006		
Farm	Helm		
Field ID	Field 6 - Zone H	Cotton Drip Irrigated Variety, Herbicide,	Keeling
Exp. Design	Replicated		
Soil Type			

Field Operations	Date	Activity	
Tillage	3/7	Stalk puller	Field 6H
			N
	6/15	Diked	
Fertility	4/14	68 lbs/a P2O5 (10-34-0) and 20 lbs/a N (32-0-0) with coulter rig	
	5/30	60 lbs/a of N (32-0-0) with coulter rig	
	7/12,13	75 lbs/a of N (32-0-0) (Injected into drip lines)	
Planting	5/4	FM989B2R	
Herbicide/Growth	4/27	Roundup 22 oz/a	
Regulator	4/27	Prowl 2 qt/a	
	5/5	Caporal broadcast 32 oz/a	
	6/5	Roundup 1 qt/a	
	7/11	Pentia 8oz/a	
	7/24	Pentia 8oz/a	
Insecticide			
Harvest aid	10/20	Gramoxone Inteon 16 oz/a Aim 1 oz/a	
Irrigation Amt.			
PrePlant & Planting	4/18-5/29	5.09 in.	
Seasonal	6/12-8/27	14.43 in.	
Rainfall			
PrePlant & Planting	1/1 - 5/4	2.57 in.	
Seasonal	5/4 - 9/30	11.15 in.	