Table of Contents

Research Participants 3
Introduction 4
Subsurface Drip Irrigation Pre-plant Irrigation Timing Effects on Germination and Cotton Yield (Field 2) 5
J. Bordovsky and J. Mustian
Cotton Response to Irrigation Interval using Subsurface Drip Irrigation (Field 3) 6
J. Bordovsky, J. Mustian, D. Winters, and C. Hardin
Bayer Cotton Agronomic Performance Trial (Field 5a) 7
W. Keeling, J. Reed, J. Spradley, and D. Oliver
The Influence of Crop Rotation, Irrigation Rate, and Variety on Verticillium Wilt and Cotton Yield from 2007-2012 (Fields 5b,c,d,e) 8
T. Wheeler, J. Bordovsky, and W. Keeling
Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels in a 3-year rotation following cotton (2011) and grain sorghum (2010) (Field 5b) 9
W. Keeling, J. Bordovsky, J. Reed, J. Spradley, and J. Cave
Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels in a 3-year rotation following sorghum (2011) and cotton (2010) (Field 5d) 10
W. Keeling, J. Bordovsky, J. Reed, J. Spradley, and J. Cave
Continuous Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels (Field 5e) 11
W. Keeling, J. Bordovsky, J. Reed, J. Spradley, and J. Cave
Effects of Subsurface Drip Irrigation (SDI) Level, Nitrogen Rate and Harvest Method on Cotton Yield and Fiber Quality (Field 6a-f) 12
W. Keeling, J. Bordovsky, E. Hequet, and J. Wanjura
Comparison of Cotton Yield and Water Productivity Among SDI Fields with Different Lateral/Row Configurations (Field 2, 3 and 6h) 13
J. Bordovsky, J. Mustian, D. Winters, and C. Hardin
Effect of Nitrogen Fertilizer on Cotton Host-plant Quality and Its Impact on Arthropod Activity (Field 6g) 14
M.N. Parajulee, S.C. Carroll, R.B. Shrestha, and J.P. Bordovsky

Farm Scale Yield Comparisons of Subsurface Drip Irrigation to Center Pivot Irrigation .. 15

J. Bordovsky, C. Hardin, and J. Mustian
Appendix 16
Halfway and Helms Rainfall and Irrigation Amounts 17
Official Log of Operations 25

Texas AgriLife Research - Texas AgriLife Extension
Lubbock/Halfway
Research Participants

Name	Specialty	Association	E-mail Address
Jaroy Moore, Ph.D.	Resident Director	AgriLife Research	j-moore@tamu.edu
James P. Bordovsky, M.S.	Ag. Engineering - Irrigation	AgriLife Research	j-bordovsky@tamu.edu
Stanley C. Carroll, M.S.	Entomology - Cotton	AgriLife Extension	s-carroll2@tamu.edu
Justin Cave, B.S.	Weed Science	AgriLife Research	justin.cave@ttu.edu
Casey Hardin, B.S.	Research Farm Manager	AgriLife Research-Halfway	cwhardin@ag.tamu.edu
Eric Hequet	Project Director-FBRI	AgriLife Research, TTU	eric.hequet@ttu.edu
Wayne Keeling, Ph.D.	Agronomy - Weed Science	AgriLife Research	w-keeling@tamu.edu
Joe Mustian, B.S.	Engineering - Irrigation	AgriLife Research	jmustian@ag.tamu.edu
Daniel Oliver	Agronomy	Bayer CropScience	daniel.oliver@bayer.com
Megha Parajulee, Ph.D.	Entomology	AgriLife Research, TTU	m-parajulee@tamu.edu
Jacob Reed, Ph.D.	Agronomy	BASF	jacob.reed@basf,com
R. B. Shrestha, Ph. D.	Research Associate	AgriLife Research	RShrestha@ag.tamu.edu
Justin Spradley, B.S.	Agronomy Extension Assistant-	AgriLife Research	jispradley@ag.tamu.edu
Sean Wallace, B.S.	Agronomy	AgriLife Extension	smwallace@ag.tamu.edu
John Wanjura, Ph.D.	Agricultural Engineer	USDA-ARS	john.wanjura@ars.usda.gov
Terry Wheeler, Ph.D.	Plant Pathology	AgriLife Research	twheeler@ag.tamu.edu
Winters, David, B.S.	Engineering - Irrigation	AgriLife Research	dwinters@ag.tamu.edu

Introduction

The Texas A\&M University System purchased 373 acres of farmland from the estate of Ardella Helm in December, 1999, for the sole purpose of conducting large scale research and extension programs to enhance producer profitability and sustainability in an irrigated environment. The farm is located 2 miles south of the Texas AgriLife Research and Extension Center at Halfway in Hale County.

Current projects at the Helm Research Farm involve production options and economics of subsurface drip irrigation (SDI). Other research projects include weed and insect control, plant breeding and yield trials for several commodities and production systems projects. Irrigated experiments were conducted under the 130 acre center pivot and on 86 -acres of SDI.

The soils are predominantly deep clay loams and silty clay loams, with $0-1 \%$ and $1-3 \%$ slopes, moderately to moderately slowly permeable subsoils and high water and fertility holding capacities. Supplemental water for irrigation comes from five wells, 320 to 340 feet deep, pumping at rates of 300 to 400 gallons per minute each.

Large plot irrigated grain sorghum study conducted on 130 acres equipped with a center pivot at Helm Research Farm, Halfway, TX.

Cotton is harvested with a modified John Deere 7445 stripper at Helm Research Farm, Halfway, TX. Bulk seed cotton weights and fiber data sub-samples are obtained from SDI treatments.

Subsurface Drip Irrigation Pre-plant Irrigation Timing Effects on Germination and Cotton Yield

 (Field 2).James Bordovsky and Joe Mustian
Objective: To determine the effects on cotton lint yield of three pre-plant irrigation sequences using SDI.
Methodology: Plot size was 8 rows by 1300 ' with three replications. Treatment factors were pre-plant irrigation sequence and depth of planting. SDI laterals were spaced at 60 inches. Crop rows were spaced 30 inches apart with two rows planted on single 60 inch beds. All tillage and seedbed shaping occurred immediately following the previous year's harvest, therefore, the seedbeds were undisturbed from December until cotton planting in May. Three irrigation sequences were replicated (3 x) in a complete randomized block design and are depicted graphically in Figure 1.

Figure 2. Subsurface drip irrigated cotton germination test plot. This picture was taken on July 6 during the record drought of 2011 at the Helms Research Farm.

Table 1. Yield and seasonal irrigation water use efficiency resulting from three pre-plant irrigation sequences, 20112012.

	Treatment	Year	
		2011	2012
Yield (lb/ac)	T1	902 a	1056 a
	T2	1021 a	1113 a
	T3	584 b	1156 a
SIWUE (lb/ac-in)	T1	61.7 a	75.4 a
	T2	70.3 a	81.2 a
	T3	32.6 b	84.8 a

Cotton Response to Irrigation Interval using Subsurface Drip Irrigation (Field 3)

James P. Bordovsky, Joe Mustian, David Winters and Casey Hardin
Objective: To determine SDI cotton yield response to irrigation intervals of 0.25 -, 1 or 2-, and 7 -days at two irrigation levels in a field with slopes common to the Texas South Plains.

Methodology: Two irrigation levels and three irrigation intervals were used to determine the effects of these parameters on cotton irrigated with subsurface drip irrigation from 2009 to 2012. The high irrigation level met $\sim 80 \%$ of crop water needs using ET scheduling, low level irrigations were 50% of the high. Irrigation intervals were every 6 hours or $0.25-\mathrm{d}$, either 1 or 2-d, and 7 -d. The intermediate irrigation interval was changed from 2 to 1 day in 2010 and in subsequent years. Six 8 -row x 1300 ft treatment plots were established in each of four blocks within a field characterized by decreasing elevations from SW to NE, with rows oriented N-S. Cotton was planted by mid May in each year at $\sim 54,000 \mathrm{ppa}$ on 30 -in rows. Lint yield was determined by harvesting 4 rows using a conventional cotton stripper (figure 1) and adjusting seed cotton weights from each plot using lint turnout percentages from multiple 1 to 2 lb sub-samples from each replicate. Irrigation quantities were approximately the same for all treatments within an irrigation level. Additional details are given in the appendix.

Figure 1. Cotton harvest from plots of the SDI irrigation interval study, 2009-2012.
0.25 - to 7 days. Seasonal irrigation productivity was determined by subtracting yield of non-seasonally irrigated plots (dryland) from yields of irrigated plots and dividing that quantity by seasonal irrigation depth. WUE increased from 93.5 to $100.5 \mathrm{lb} / \mathrm{ac}$-inch (low irrigation) and from 67.8 to $82.9 \mathrm{lb} / \mathrm{ac}-$ in (high irrigation) as irrigation intervals increased from 0.25 to 7 days. Loan values were also significantly higher at irrigation intervals of 7 days compared to those of 0.25 days at both low and high irrigation levels. It is hypothesized that by irrigating less frequently, the soil profile is wetted deeper and wider during each irrigation event. This should increase rooting volume and providing increased opportunity for cotton plants to utilize available water and nutrients from the larger volume of soil. Differences due to irrigation interval were more pronounced during the dry summers of 2011 and 2012 (data not shown) than during the summers of 2009 and 2010.

Results: The four-year average cotton lint yield, seasonal water productivity and loan values increase as irrigation intervals increase at both the low and high irrigation levels (figure 2). At the low irrigation level, average yield increased from 1095 to $1136 \mathrm{lb} / \mathrm{ac}$ and at high irrigation, yields increased significantly from 1327 to $1539 \mathrm{lb} / \mathrm{ac}$ when irrigation intervals increased from every

Figure 2. Average yield, seasonal irrigation water use efficiency, and cotton lint loan values from the SDI irrigation interval study, 2009-2012.

Bayer Cotton Agronomic Performance Trial (Field 5a)

Wayne Keeling, Jacob Reed, Justin Spradley, and Daniel Olivier
Objective: The objective was to compare yield, fiber quality, and gross revenue as a function of five Bayer CropScience varieties and water levels.

Methodology: Irrigations were at a base irrigation level (M), 1.5 x base irrigation level (H), and 0.5 x base irrigation level (L). See appendix for additional agronomic details.

Results: When averaged across irrigation levels, highest yields were produced with FM 2484 B2F and FM 9170 B2F. When averaged across varieties, yields ranged from 655 to 1598 lbs./A. Compared to the base irrigation treatment, yields were reduced 51% at the low irrigation level and increased only 19% at the high irrigation level. When averaged across irrigation level, lint values were similar for all varieties but were reduced with the high irrigation treatment. When averaged across varieties, gross revenues were reduced 51% with the low irrigation level and increased only 7% with the high irrigation level. When averaged across irrigation levels, highest gross revenues were produced with FM 2484 B2F and FM 9170 B2F.

Table 1. Effects of B2RF variety and LEPA irrigation levels on cotton lint yields at Helms Farm, Halfway, TX, 2012.

Variety	Low	Medium	High	Irrig. Avg.
		lbs/A		
FM 9170B2F	698 a	1361 a	1654 ab	1238 AB
FM 1944GLB2	591 a	1258 a	1486 b	1111 C
FM 9250GL	632 a	1318 a	1579 ab	1176 BC
FM 2484B2F	697 a	1402 a	1869 a	1321 A
FM 2011GT	657 a	1394 a	1406 b	1153 BC
Avg. \% change	$\begin{gathered} \hline 655 \mathrm{C} \\ (-51 \%) \end{gathered}$	$\begin{gathered} 1347 \text { B } \\ (-----) \end{gathered}$	$\begin{aligned} & 1598 \mathrm{~A} \\ & (+19 \%) \end{aligned}$	

Table 2. Effects of B2RF variety and LEPA irrigation levels on lint value at Helms Farm, Halfway, TX, 2012.

Variety	Low	Medium	High	Irrig. Avg.
FM 9170B2F	56.17 b	56.63 a	51.77 a	54.87 A
FM 1944GLB2	56.25 ab	55.98 a	50.42 a	54.19 A
FM 9250GL	56.45 ab	55.77 a	48.38 a	53.58 A
FM 2484B2F	57.22 a	56.62 a	50.43 a	54.74 A
FM 2011GT	56.70 ab	55.73 a	51.53 a	54.63 A
Avg.	56.54 A	56.15 A	50.52 B	

Table 3. Effects of B2RF variety and LEPA irrigation levels on gross revenues at Helms Farm, Halfway, TX, 2012.

Variety	Low	Medium	High	Irrig. Avg.
		--\$/A		
FM 9170B2F	392 a	772 a	856 ab	673 AB
FM 1944GLB2	349 a	704 a	749 ab	600 B
FM 9250GL	357 a	735 a	764 ab	619 B
FM 2484B2F	399 a	793 a	948 a	712 A
FM 2011GT	372 a	777 a	724 b	626 B
Avg.	373 B	756 A	808 A	
\% change	(-51\%)	(-----)	(+7)	

The Influence of Crop Rotation, Irrigation Rate, and Variety on Verticillium Wilt and Cotton Yield

 from 2007 - 2012 (Field 5b,c,d,e).Terry Wheeler, Jim Bordovsky, and Wayne Keeling
Objective: To determine the influence of various management tools (crop rotation, irrigation rate, and variety) on severity of Verticillium wilt, population density of Verticillium dahliae, and yield.

Methodology: Three pies (B, C, D) of the Helms circle were in a 2 year-cotton/1 year-grain (primarily sorghum) from 2001-2012. One pie (E) was in continuous cotton over this time period. Three irrigation rates (Base (B), B+50\% and B-50\%) were used, where from 2007-2009, the Base rate was designed to match 80% of the evapotranspiration rate (ET) and from $2010-2012$, the Base rate was designed to match 60% of ET, when pumping capacity was sufficient. In $2007-2009$, the susceptible variety to Verticillium wilt was Stoneville 4554B2F and the partially resistant variety for two of those years was Deltapine (DP) 104B2RF. From 2010-2012, the susceptible variety to Verticillium wilt was DP 0912B2RF and the partially resistant variety was Fibermax 9180B2F. Soil samples were taken in January to monitor population density of V. dahliae spores (microsclerotia), and incidence of wilt was determined around $20^{\text {th }}$ of August each year from 2008-2012. Yield was harvested from these large plots each year.

Results: The microsclerotia of the fungus generally increased over time, but at a much faster rate in the continuous cotton and higher irrigation rates (Fig. 1A). Incidence of wilt was highest in 2010 when the weather was especially conducive for disease (cool and wet in July) and has been much higher for the continuous cotton and B+50\% irrigation rate than for the Base or B50% irrigation rates and rotated cotton in all years (Fig. 1B). For

Figure 1. Effect of continuous cotton (CC) or cotton rotated with sorghum (Rot) and irrigation rate (Base, Low $=$ Base- 50%, High=Base $+50 \%$) on density of Verticillium dahliae microsclerotia/cm3 soil and Verticillium wilt incidence over time. cotton watered with the Base $+50 \%$ irrigation rate (Fig. 2A), yields have been highest every year for the rotated cotton that was planted to a variety that was partially resistant to Verticillium wilt. The combination of rotated cotton and a susceptible variety, or continuous cotton and a partially resistant variety had intermediate yields at the Base $+50 \%$ irrigation rate over the six years; and the worse yields in 2008-2010, and 2012 were with the combination of continuous cotton and a susceptible variety at the Base $+50 \%$ irrigation rate. When cotton was irrigated with the Base irrigation rate (Fig. 2B), then using crop rotation resulted in the best cotton yields in all years except for 2011. The benefit of a partially resistant variety resulted in higher yields about $1 / 2$ of the time if the land was rotated to sorghum once every 3 years. Generally yields were lower with continuous cotton compared to rotated cotton, and using a partially resistant variety resulted in much higher yields than a susceptible variety in 2 of the 6 years, or similar yields in 3 of 6 years. Since very little Verticillium wilt occurred at the Base50\% irrigation rate, data from these years are not presented.

Figure 2. The effect of crop rotation (Rot = rotated cotton, $\mathrm{CC}=$ continuous cotton) and partially resistant (R) or susceptible (S) varieties to Verticillium wilt.

Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels in a 3-year rotation following cotton (2011) and grain sorghum (2010) (Field 5b)
Wayne Keeling, Jim Bordovsky, Jacob Reed, Justin Spradley and Justin Cave
Objective: The objective was to compare yield, fiber quality, and gross revenue as a function of popular cotton varieties and water levels in a three-year crop rotation with this year's cotton following cotton.

Methodology: Irrigations were at a base irrigation level (M), $1.5 \times$ base irrigation level (H), and $0.5 \times$ base irrigation level (L). See appendix for additional agronomic details.

Results: The results are contained in the following tables.

Table 1. Effects of cotton variety and LEPA irrigation levels on cotton lint yields at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	558 a	1380 a	1340 a	1092 A
FM 9180B2F	450 b	1087 a	1337 a	958 A
NG 3348B2RF	441 b	1205 a	1201 a	949 A
ST 4288B2RF	609 a	1113 a	1572 a	1098 A
Avg. \% change	$\begin{gathered} 514 \mathrm{~B} \\ (-57 \%) \end{gathered}$	$\begin{aligned} & 1196 \mathrm{~A} \\ & (-) \end{aligned}$	$\begin{gathered} 1362 \mathrm{~A} \\ (+12 \%) \end{gathered}$	

Table 2. Effects of cotton variety and LEPA irrigation levels on lint value at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	55.83 a	54.24 b	51.53 a	53.87 B
FM 9180B2F	55.12 a	57.50 a	52.92 a	55.18 AB
NG 3348B2RF	54.27 a	55.84 ab	52.08 a	54.06 B
ST 4288B2RF	56.48 a	57.03 a	54.03 a	55.85 A
Avg.	55.42 A	56.15 A	52.64 B	

Table 3. Effects of cotton variety and LEPA irrigation levels on gross revenues at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	311 a	705 a	691 a	584 A
FM 9180B2F	249 b	625 a	707 a	527 A
NG 3348B2RF	239 b	669 a	625 a	511 A
ST 4288B2RF	344 a	365 a	837 a	605 A
Avg. \% change	$\begin{aligned} & 286 \mathrm{~B} \\ & (-57 \%) \end{aligned}$	$\begin{aligned} & \text { 670A } \\ & (\stackrel{\square}{\square}) \end{aligned}$	$\begin{aligned} & 715 \mathrm{~A} \\ & (+6 \%) \end{aligned}$	

Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels in a 3-year rotation following sorghum (2011) and cotton (2010) (Field 5d).
Wayne Keeling, Jim Bordovsky, Jacob Reed, Justin Spradley and Justin Cave
Objective: The objective was to compare yield, fiber quality, and gross revenue as a function of popular cotton varieties and water levels in a three-year crop rotation with this year's cotton following sorghum.

Methodology: Irrigations were at a base irrigation level (M), $1.5 \times$ base irrigation level (H), and $0.5 \times$ base irrigation level (L). See appendix for additional agronomic details.

Results: The results are contained in the following tables.

Table 1. Effects of cotton variety and LEPA irrigation levels on cotton lint yields at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	556 ab	1174 ab	1164 b	965 BC
FM 9180B2F	468 b	1199 ab	1349 a	1005 B
NG 3348B2RF	442 b	1082 b	1239 ab	921 C
ST 4288B2RF	657 a	1279 a	1323 a	1086 A
Avg.	531 C	1183 B	1269 A	
\% change	(-55\%)	(-)	(+7\%)	

Table 2. Effects of cotton variety and LEPA irrigation levels on lint value at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	54.26 a	53.84 b	52.69 ab	53.60 B
FM 9180B2F	55.51 a	57.28 a	54.43 ab	55.74 A
NG 3348B2RF	53.90 a	55.79 a	52.08 b	53.92 B
ST 4288B2RF	54.59 a	57.23 a	56.73 a	56.18 A
Avg.	54.57 AB	56.03 A	53.98 B	

Table 3. Effects of cotton variety and LEPA irrigation levels on gross revenues at Helm Farm, Halfway, TX 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	300 ab	632 b	615 b	516 C
FM 9180B2F	261 b	687 ab	735 a	561 B
NG 3348B2RF	239 b	604 b	642 b	495 C
ST 4288B2RF	359 a	732 a	751 a	614 A
Avg.	290 B	664 A	686 A	
\% change	(-56\%)	(-)	(+3\%)	

Continuous Cotton Variety Performance as Affected by Low-Energy Precision Application (LEPA) Irrigation Levels (Field 5e)

Wayne Keeling, Jim Bordovsky, Jacob Reed, Justin Spradley and Justin Cave
Objective: The objective was to compare yield, fiber quality, and gross revenue as a function of popular cotton varieties and water levels in a cotton monoculture.

Methodology: Irrigations were at a base irrigation level (M), 1.5 x base irrigation level (H), and 0.5 x base irrigation level (L). See appendix for additional agronomic details.

Results: The results are contained in the following tables.

Table 1. Effects of cotton variety and LEPA irrigation levels on cotton lint yields at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
DP 0912B2RF	536 a	1058 a	$\mathrm{lbs} / \mathrm{A}$	1005 b
FM 9180B2F	437 a	997 a	866 B	
NG 3348B2RF	443 a	997 a	1205 a	880 AB
ST 4288B2RF	537 a	1079 a	1137 ab	859 B
Avg.	488 C	1033 B	1254 a	956 A
$\%$ change	(-53%)	$(----)$	$(+10 \%)$	

Table 2. Effects of cotton variety and LEPA irrigation levels on lint value at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
			ϕ / lb	
DP 0912B2RF	54.14 a	55.44 a	51.33 b	53.63 BC
FM 9180B2F	55.25 a	57.01 a	52.73 ab	55.00 AB
NG 3348B2RF	54.20 a	55.90 a	49.18 b	53.09 C
ST 4288B2RF	55.10 a	56.16 a	55.34 a	55.53 A
Avg.	54.67 A	56.13 A	52.14 B	

Table 3. Effects of cotton variety and LEPA irrigation levels on gross revenues at Helm Farm, Halfway, TX, 2012.

Variety	L	M	H	Avg.
			$\$ / A$	
DP 0912B2RF	291 a	588 a	518 c	465 B
FM 9180B2F	243 a	569 a	636 ab	482 AB
NG 3348B2RF	241 a	558 a	560 bc	453 B
ST 4288B2RF	296 a	606 a	694 a	432 A
Avg.	268 B	580 A	602 A	
\% change	(-54%)	$(----)$	$(+4 \%)$	

Effects of Subsurface Drip Irrigation (SDI) Level, Nitrogen Rate and Harvest Method on Cotton Yield and Fiber Quality (Field 6a-f).
Wayne Keeling, James Bordovsky, Eric Hequet, and John Wanjura

Objective: To determine the effects on cotton production, particularly fiber quality, of excess nitrogen, harvest method, and variety at two irrigation levels.

Methodology: Plot size was 8 rows by 1600 ' with three replications. Treatment factors were irrigation level, cotton variety, nitrogen level and harvest method. Excess nitrogen was applied in appropriate plots prior to planting with the remainder applied during seasonal irrigations. Previous tests have indicated excess nitrogen lowered fiber quality. All treatments were irrigated with SDI. The High water level was irrigated at 100% ET, the Low level at 50% of the High. Four rows from each plot were harvested by either cotton picker (Oct 31) or stripper (Nov 8) with 200-lb samples to be analyzed at the Fiber and Biopolymer Research Lab at Texas Tech. Detailed agronomic information is contained in the appendix.

Table 1. Effects of SDI Irrigation level, nitrogen rate, and harvest method on cotton lint yield									
Variety	Irrigation Level	Nitrogen Level (1b/A)) Yield (lb / A)(\% turnout)		Lint Value (cents/LB)		Gross Return (\$/A)	
DP 0912B2RF				Harvest Method		Harvest Method		Harvest Method	
				Picker	Stripper	Picker	Stripper	Picker	Stripper
	Low Irrigation								
		High N	147	820a (.379)	985a (.368)	52.17c	53.68a	428a	529a
		Low N	60	986a (.388)	1029a (.366)	53.70bc	52.90a	530a	544a
	High Irrigation								
		High N	153	1161a (.372)	1232a (.349)	56.52a	56.65a	669a	697a
		Low N	82	1129a (.378)	1158a (.349)	55.15ab	56.80a	612a	657a
		Average		1024 A (.379) A	1101 A (.358)B	54.39A	55.01A	559A	606A
FM 9180 B2F	Low Irrigation								
		High N	147	837b (.367)	888b (.345)	56.83a	56.77a	476b	504b
		Low N	60	839b (.367)	897b (.343)	56.83a	56.27a	477b	504b
	High Irrigation								
		High N	153	1155a (.363)	1266a (.333)	57.27a	57.28a	661a	725a
		Low N	82	1147a (.362)	1245a (.333)	57.33a	57.18a	658a	712a
		Average		$944 \mathrm{~A}(.364) \mathrm{A}$	1074A (.338)B	57.06A	56.88A	568A	611A

RESULTS:

Yields produced with DP 0912B2RF were not affected by irrigation or nitrogen level within a harvesting method, but overall yields trended higher with stripper harvesting (Table 1). Lint values were similar for both harvesting methods, while irrigation and nitrogen levels did influence quality within the picker harvested plots. Irrigation level, nitrogen level or harvesting method did not affect gross return for DP 0912B2RF. Irrigation levels increased yields for FM 9180B2F within both harvesting methods, and overall yields were higher with stripper harvesting. Irrigation level, nitrogen level, or harvesting method did not affect lint value for FM 9180B2F, but gross returns were increased with the high irrigation treatment. Percent lint turnout was increased with picker harvest for both varieties.

Comparison of Cotton Yield and Water Productivity Among SDI Fields with Different Lateral/Row Configurations (Fields 2, 3 and 6h).

James P. Bordovsky, Joe Mustian, David Winters, and Casey Hardin
Objective: To make general comparisons of germination and cotton yield resulting from SDI system/plant position strategies.

Methodology: Seed germination has been a major issue when irrigating with SDI, particularly in years with little rain during the planting period. Cotton was drip irrigated in three separate field experiments in 2011 and treatments were arranged in one replicated field in 2012. The "traditional" drip installation provided one drip lateral in alternate crop furrows. The "shallow" drip treatments had SDI laterals placed 8 inches below the level soil surface in an alternate furrow pattern. A "skip-row" planting pattern with cotton planted directly over the SDI laterals to increase the probability of seed germination was attempted in a June 14, 2011 planting, and was used as a replicated treatment in 2012. The 2012 test determined yield and water productivity of skip row versus traditional plantings with cotton planted at an optimum time.

Results: Yield and water productivity data is given in Table1. In 2011, the late planted skip row treatment resulted in a low, but very acceptable yield of $900 \mathrm{lb} /$ acre compared to the yield from a test area where traditional SDI plantings resulted in poor cotton germination, poor plant stand, and yield of $859 \mathrm{lb} / \mathrm{ac}$. Seasonal irrigation water use efficiency favored the skip row treatment in this excessively hot, dry growing season. In 2012, cotton was planted on May 3 with marginal soil water in the planted rows of the "traditional" plots and adequate soil water in rows of the "skip row" plantings. Rain events on May 10 and May 13 assisted in providing reasonable germination in the "traditional" treatments (figure 1). In 2012, the "traditional" treatment resulted in significantly higher lint yield (1957 vs. $1547 \mathrm{lb} / \mathrm{ac}$), seasonal irrigation water use efficiency (135 vs . $103 \mathrm{lb} / \mathrm{ac}-\mathrm{in}$), and total irrigation use efficiency (95 vs .75 $\mathrm{lb} / \mathrm{ac}-\mathrm{in}$) than the skip row treatments. Future experiments will evaluate these treatments with planting date as a second factor.

Figure 1. "Skip-row drip" with 60 -inch lateral spacing and 60 -inch cotton rows planted directly above laterals (bottom) and "traditionally planted" cotton with 60 -inch SDI laterals in alternate furrows between 30 -in crop rows (top).

Table 1 Yield and water productivity data from subsurface drip irrigated cotton tests planted in different configurations, 2011-2012.

	2011			2012*		Average of 2011 \& 2012	
	Traditionial Drip	Shallow Drip	Skip Row Drip	Traditionial Drip	Skip Row Drip	Traditionial Drip	Skip Row Drip
Planting Date	5/13/2011	5/13/2011	6/14/2011	5/3/2012	5/3/2012		
Pre \& At Plant Irrigation (in)	8.6	7.3	13.7	7.0	7.0	7.8	10.4
Seasonal Irrigation (in)	10.8	15.4	9.3	13.1	13.1	11.9	11.2
Yield (lb/ac)	859	1540	900	1957	1547	1408	1224
Seasonal Irrigation WUE (lb/ac-in)	58	85	72	135	103	97	88
Total Irrigation Use Efficiency (lb/ac-in)	44	68	39	95	75	70	57

[^0]Effect of Nitrogen Fertilizer on Cotton Host-plant Quality and Its Impact on Arthropod Activity (Field 6g).
M.N. Parajulee, S.C. Carroll, R.B. Shrestha, J.P. Bordovsky

Objective: The objective was to evaluate the effect of nitrogen fertilizer application rates on the population dynamics of cotton arthropods, plant growth parameters, and lint yield.

Methodology: A high-yielding FiberMax cultivar, FM 9063B2R, was planted at a targeted rate of 56,000 seeds/acre on May 17, 2012. The experiment consisted of a randomized block design with five treatments and five replications. Pre-treatment soil samples (consisting of three soil cores; 0 to 24 -inch depth), were collected from each of the 25 experiment plots on June 1, 2012. The five side-dress N fertilizer application treatments at rates of $0,50,100,150$, and 200 lb N/acre were applied on July 6, 2012. Crop growth and insect activity were monitored during the crop season. Weekly during most of July and August, numerous plant variables were measured to evaluate the influence of residual soil nitrogen on early plant growth patterns. Examples of collected plant data variables included: 1) plant biomass weight, 2) plant height, 3) total leaf area, 4) percent leaf nitrogen, 5) number of $1^{\text {st }}$ position cotton squares/plant, and 6) percent fruit shed.

Results: Higher levels of available residual soil N and augmented N applications significantly affected plant biomass and height. Both plant biomass and height increased continuously from 0 lb /acre up to the 150 lb /acre N applied plots. Plant biomass was significantly highest in the $150 \mathrm{lb} /$ acre N applied treatment, but it decreased significantly when an additional 50 lb /acre N was applied ($200 \mathrm{lb} /$ acre N plots). Leaf chlorophyll content (SPAD reading) increased linearly from zero-N to 100 lb N treatment plots (Fig. 1), but the plots which received the three highest N application rates (100,150 , and $200 \mathrm{lb} \mathrm{N} / \mathrm{acre}$) exhibited relatively consistent leaf chlorophyll readings. Arthropod densities were low across all N fertility treatments during 2012. As a result, treatment effect on overall arthropod abundance was not detected. Nitrogen fertility level influenced fruiting profile and boll maturity. Plants ceased setting additional squares in zero and $50-\mathrm{lb} \mathrm{N}$ plots 2 wk into flowering while higher N plots were actively producing squares.
Zero-N applied plots produced the lowest yield and yield increased curvilinearly, with highest average yield occurring in the 150 and 200 lb N/acre treatments (Fig. 2).

Fig. 1. Effect of nitrogen application rates on fifth mainstem leaf chlorophyll content, 2012.

Fig. 2. Effect of N application rates on lint yield after 10 years of repetitive applications, 2012.

Farm Scale Yield Comparisons of Subsurface Drip Irrigation to Center Pivot Irrigation. James P. Bordovsky, Casey Hardin, and Joe Mustian

Objective: Compare lint yields and irrigation quantities from farm scale cotton production irrigated by subsurface drip irrigation (SDI) and LEPA.

Methodology: Interest in subsurface drip continues as water availability decreases and opportunities for cost share assistance for water conserving irrigation equipment remains available. The question of cotton production using SDI verse pivot is continually asked. The Helms Research Farm at Halfway provides a unique, controlled environment that sheds light on this question. The problems not normally encountered in small plot research, such as limited irrigation water, inconsistent soils, and/or challenging topography, are reflected in results while irrigating with SDI and LEPA systems over past growing seasons. Details of SDI and LEPA irrigation experiments are contained elsewhere within the Helm Summary Report. This individual report contains average commercial cotton gin yields and irrigation amounts used to achieve those yields with respective irrigation systems.

Results: Lack of early season rainfall and typical high winds and low humidity at planting have caused cotton germination problems in SDI areas in some years. Excess drip irrigation to achieve germination also resulted in moving planter applied insecticides away from the seed drill resulting in foliar insecticide battles with thrip. In cool years, young cotton plants in all areas struggled resulting in slow early growth. Yields were
low in 2003, 2005 and 2008 due to cool, wet weather at planting, hail, and short growing season, respectively. Yields were low due to extreme drought and the limited irrigation trials in 2011. Overall, cotton yields have been at or above county averages. For the years where data is available, SDI yields averaged $1270 \mathrm{lb} / \mathrm{ac}$ using 16.1 inches compared to LEPA yields of $1024 \mathrm{lb} / \mathrm{ac}$ using an average of 12.5 inches of total annual irrigation. Drip yields from various experiments in various years have ranged from 0 to over $2400 \mathrm{lb} / \mathrm{acre}$. LEPA yields have ranged between 200 and 2000 lb /acre.

Table 1. Commercial cotton gin lint yield and total irrigation water delivered by SDI and LEPA irrigation systems at Helms, 2002-2011.

	SDI				LEPA		
	Area (ac)	Tot. Irr. (in)	Yld. $(\mathrm{lb} / \mathrm{ac})$	Area (ac)	Tot. Irr. (in)	Yld. $(\mathrm{lb} / \mathrm{ac})$	
2002	71	18.47	1127	84	15.71	1209	
2003	71	14.95	1086	103	12.86	1084	
2004	71	14.00	1500	103	10.00	1100	
2005	53.6	10.86	1041	60	3.05	828	
2006	71	17.33	1566	100	16.73	1537	
2007	55.3	8.95	1642	104	8.06	1232	
2008	71.3	18.13	1335	93	15.13	909	
2011	83.0	22.14	1016	68	16.00	467	
2012	$\underline{75.76}$	$\underline{19.81}$	$\underline{1114}$	$\underline{75}$	$\underline{15.20}$	$\underline{850}$	
Avg.		16.07	1270		12.5	1024	

APPENDIX

2012 Rain and Irrigation Amounts at Helm Farm and Halfway

17
2012 Rain and Irrigation Amounts at Helm Farm and Halfway

2012 Rain and Irrigation Amounts at Helm Farm and Halfway

2012 Rain and Irrigation Amounts at Helm Farm and Halfway
Rainfall (inches) Helms Irrigation Amounts (inches) $D=$ driip irrigation, $L=L E P A$ irrigation, $S=$ spray irrigation, $F=$ furrow water

2012 Rain and Irrigation Amounts at Helm Farm and Halfway
Rainfall（inches）Helms Irrigation Amounts（inches）$D=$ driip irrigation，$L=L E P A$ irrigation，$S=$ spray irrigation，$F=$ furrow water

			2］S／S			－1	－0	－0	－a	－	－0	0	\square	0		D	\square		0	0	0	\square	\square	0	0	\square	\square	－0	0	0					
	은	苍			$\stackrel{m}{\circ}$	$\stackrel{m}{\circ}$	$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$	$\frac{N}{\circ}$	$\stackrel{N}{\circ}$	$\stackrel{N}{\dot{O}} \underset{\sim}{\circ}$	$\begin{array}{c\|c} N \\ N \\ \underset{O}{2} \\ \hline \end{array}$	\mathfrak{c}	$\underset{N}{n}$	N	N	－		$$	－		－	－	－	$\stackrel{\square}{~}$	－	0	\|r	co	$\underset{\sim}{N}$	No	$\stackrel{\circ}{\circ}$			
	음	\％				$\frac{N}{\infty}$	\mathfrak{m}	蓇:	$\stackrel{m}{\circ} \mid \stackrel{c}{o}$	$\frac{m}{0}$	$\left.\frac{m}{\dot{o}} \right\rvert\, \frac{N}{\dot{o}}$	$\begin{array}{c\|c} N \\ N & N \\ O \\ \hline \end{array}$	0	－	0	$1 \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	0			－			－	－	N	－	N	N		No	$\left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \end{aligned}\right.$			N	
	은	$\stackrel{\text { ® }}{ }$			웅	$\frac{N}{\infty}$	웅	$\underset{\substack{0}}{\bar{o}}$	$\stackrel{m}{\circ} \mid \stackrel{c}{c}$	$\frac{N}{\circ}$	$\stackrel{F}{\square} \left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \end{aligned}\right.$	0	$\dot{\infty}$	$\left\|\begin{array}{c} 0 \\ \underset{O}{0} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \substack{0 \\ \\ \hline \\ \hline} \end{array}$	$\stackrel{N}{\circ}$	－	－	N	No		N	－	N	－	No	N	OMN	$\stackrel{N}{n}$	\bigcirc			$\stackrel{\infty}{0}$	$\stackrel{0}{0}$	
¢ 山	은	$\stackrel{\text { O}}{ }$	¢ 0 0 0		웅	$\frac{N}{\infty}$	웅	$\underset{\substack{\circ}}{\bar{o}}$	$\frac{m}{\circ}$	$\frac{N}{\infty}$	$\frac{F}{0}-\frac{0}{0}$	$\underset{\sim}{2}$	$\left.\right\|_{\infty} ^{\infty}$	$\left\lvert\, \begin{aligned} & 0 \\ & \substack{0 \\ 0} \end{aligned}\right.$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{N \\ \vdots \\ \hline} \end{array}$	$\frac{N}{o}$	－	$\left\|\begin{array}{c} \underset{N}{0} \\ 0 \end{array}\right\|$	$\begin{gathered} -1 \\ \hline \end{gathered} \underset{\sim}{N}$	$$	$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$		No	$\underset{\substack{1}}{\substack{2 \\ \hline}}$	－	$\underset{\substack{2 \\ \\ \hline}}{ }$	$\underset{\substack{n \\ N \\ \\ \hline}}{ }$	Non	$\stackrel{n}{n}$	\bigcirc	N			－	
¢ 0	은	$\stackrel{\text { ® }}{ }$	¢ 0 \square		웅	$\frac{N}{\infty}$	O	$\frac{\square}{0}$	$\stackrel{m}{\circ} \mid \stackrel{c}{c}$	$\frac{N}{\circ}$	$\stackrel{F}{\square} \left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \end{aligned}\right.$	O－N	$\frac{\infty}{\infty}$	＋	－	$\stackrel{N}{\circ}$	－	$\stackrel{\square}{\mathrm{N}}$	$$	$\underset{\substack{N \\ \\ \\ \hline}}{ }$	No	$\underset{\sim}{2} \underset{\sim}{2} \underset{\sim}{N}$	No	$\underset{\substack{1}}{\substack{2 \\ \hline}}$	－	$\underset{\sim}{N}$	$\underset{\sim}{N}$	\|on	$\stackrel{N}{\sim}$	\bigcirc	N		$\stackrel{\infty}{\circ}$	－	
			шәำКs		－								－		$\underline{-}$	－		$\xrightarrow{-}$	－		－								－						
$\begin{aligned} & \infty \\ & 10 \\ & \omega \end{aligned}$			¢		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$								$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \end{gathered}\right.$		oبী	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			0		ò							\bigcirc	¢						
$\begin{gathered} \text { in } \\ \stackrel{1}{1} \\ \vdots \end{gathered}$			＋		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$								$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \end{gathered}\right.$		0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$?o		ò								－						
$\frac{\overline{0}}{i \frac{0}{1}}$	$\stackrel{\rightharpoonup}{O}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$								$\left\lvert\, \begin{gathered} \circ \\ \hline 0 \\ \hline \end{gathered}\right.$		$\left\lvert\, \begin{gathered} \text { O} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$					ọ								\％						
	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{2} \\ i \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			10								$\left\|\begin{array}{c} \circ \\ 0 \\ 0 \end{array}\right\|$		Oి	$\left\|\begin{array}{c} 9 \\ 0 \\ 0 \end{array}\right\|$?o poon		op								\％						
			шә¢¢ ${ }^{\text {S }}$								－	$\underline{-}$	\pm		－		－	－		－								－$-1-$	－						
$\begin{aligned} & \infty \\ & \omega_{0} \\ & \infty \end{aligned}$			di								of	P子	$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \end{gathered}\right.$		0		O	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$								$\bigcirc 0$	0						
			＋								of	8	$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \end{gathered}\right.$		Oి		O	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$		op								$\bigcirc 0$	O						
$\frac{0}{i \frac{0}{1}}$	$\frac{\stackrel{\rightharpoonup}{O}}{\stackrel{2}{2}}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \mathbb{\otimes} \\ & \underset{\sim}{\nabla} \end{aligned}$								O		$\left\lvert\, \begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}\right.$		O		$\left\lvert\, \begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$		$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline \end{aligned}$								0	O						
	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \dot{2} \end{aligned}\right.$	O゙									$\stackrel{9}{0}$	P	$\left\|\begin{array}{c} o \\ 0 \\ 0 \end{array}\right\|$		0		0	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$		or								$\bigcirc 0$	O－						
			шәə¢Кs								$\stackrel{-1}{ }$	$\underline{1}$	－		－		－	－		1								－－－	－						
$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \end{aligned}$			di								$\stackrel{8}{0}$	子	$\left\|\begin{array}{c} \circ \\ 0 \\ 0 \end{array}\right\|$		or		0	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$								M 0	O						
0 0 0 0			＋								of	+	¢		Oి		O	$\left\|\begin{array}{l} 0 \\ \hline 0 \\ 0 \end{array}\right\|$		op								0	O						
$\frac{0}{i \frac{0}{4}}$	$\frac{\stackrel{\rightharpoonup}{O}}{\stackrel{2}{2}}$	\vec{O}	$\begin{aligned} & \mathbb{\otimes} \\ & \underset{\sim}{\nabla} \end{aligned}$								O+		안		O-		－	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$		－								0 m	O－						
	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{2} \\ \underset{\sim}{2} \end{array}\right\|$	\vec{O}									$\stackrel{8}{0}$	$\begin{aligned} & + \\ & + \\ & \hline \end{aligned}$	안		O		－	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$		－								0	O－						
			шәə¢Кs									\rightarrow		－		－	－		－	－-								－		$-$					
$\begin{aligned} & \infty \\ & i \\ & i \\ & \omega \\ & \stackrel{n}{0} \end{aligned}$			¢									웅		앙		$\left\|\begin{array}{c} 0 \\ 0 \\ \hline \end{array}\right\|$	pon			O－								0	$\stackrel{3}{0}$	O－					
$\begin{aligned} & \text { Ón } \\ & 0 \\ & 1 \\ & 1 \end{aligned}$			＋									운		안		－	O－			O－								\bigcirc	\bigcirc	\％					
				\bigcirc													$\begin{gathered} n \\ \mathbf{N} \\ \hline \end{gathered}$			$\stackrel{\square}{\circ}$			O－										웅		
				$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \end{array}\right\|$													－			$\stackrel{10}{\circ}$			응										웅		
			خ	N			$\begin{array}{lll} 1 \\ \hline & N \\ \\ \hline \end{array}$			$$	$\stackrel{N}{N}$	$\begin{gathered} N \\ N \\ N \end{gathered}$	$\begin{array}{\|c} N \\ \hline \end{array}$	$\underset{N}{N}$	$\underset{N}{N}$	$\frac{N}{N}$	$\frac{N}{N}$	$\begin{array}{\|c\|} \hline N \\ \underset{N}{N} \\ \hline \end{array}$	$\underset{\sim}{v} \underset{\sim}{N}$	$\underset{\sim}{v}$	$\underset{N}{V}$	$\underset{\sim}{v}$	$\underset{N}{N}$	$\underset{N}{N}$	$\begin{aligned} & N \\ & \stackrel{N}{N} \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\underset{N}{N}$	$$	$\begin{array}{c\|c} N & N \\ \underset{N}{N} & \stackrel{\sim}{N} \\ \hline \end{array}$	$\begin{array}{c\|c} N & N \\ \underset{N}{N} & \underset{N}{N} \\ \hline \end{array}$	N		$\underset{\sim}{N}$	N	
$\stackrel{\pi}{0}$			ロ	の		－	\cdots	\cdots	\pm	$\stackrel{\sim}{\square}$	\bigcirc	${ }^{\infty}$	\％	은	－	N	N	$\stackrel{\text { d }}{\sim}$	ลٌ	$\stackrel{+}{\circ}$	N	－	N	－	－	\sim	ल	＋	$\bigcirc 0$	\bigcirc	∞	の	은	F	
			$\Sigma 0$	\checkmark	\checkmark	－	\checkmark	\checkmark	－	\checkmark	－+	＋	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	\checkmark	－	－	\checkmark	－	に	に	心	い	\bigcirc	\bigcirc	\bigcirc	\sim	に	Ω	

2012 Rain and Irrigation Amounts at Helm Farm and Halfway
2012 Rain and Irrigation Amounts at Helm Farm and Halfway

2012 Rain and Irrigation Amounts at Helm Farm and Halfway
Rainfall (inches) Helms Irrigation Amounts (inches) $D=$ driip irrigation, $L=L E P A$ irrigation, $S=$ spray irrigation, $F=$ furrow water

Operations Summary

Operations Summary

Operations Summary

Year	2012		
Farm	Helm		
Field ID	Field 3		
Exp. Design	Cotton Respon	to Irregation Interval and Field Topography	
Soil Type			
Field Operations	Date	Activity	
Tillage	11/29/2011	Shredder	
	1/4/2012	Chisel	Field 3
	1/10/2012	Off Set Disk	个
	1/23/2012	Field Cultivator	
	2/27/2012	Lister on 60" spacing	
	3/12/2012	Roller \& Bed Conditioners	(c)
	5/25/2012	Rotary Hoe	-
	6/9/2012	Rotary Hoe	
	6/15/2012	Rotary Hoe	
	6/17/2012	Rotary Hoe	
	6/18/2012	Rotary Hoe	
	7/11/2012	Cultivate \& Dike	
Fertility	11/29/2011	$17 \mathrm{lbs} \mathrm{N/ac} \mathrm{+} 58 \mathrm{lbs}$ P/ac (10-34-0 applied thru coulter rig)	
	7/10-23/2012	32 lbs N/ac (32-0-0 applied thru Drip on Low Irr.)	
	7/10-23/2012	56 lbs N/ac (32-0-0 applied thru Drip on High Irr.)	
Planting	5/17/2012	FM 9180B2F at 56,144 seed/ac	
Herbicide/Growth	3/12/2012	Trifluralin 1 qt /ac	
Regulator	5/18/2012	Caparol 3 pt/ac	
	5/18/2012	Roundup 32 oz /ac	
	6/18/2012	Mad Dog $32 \mathrm{oz} / \mathrm{ac}$	
	7/16/2012	Mad Dog $32 \mathrm{oz} / \mathrm{ac}$	
Insecticide	6/18/2012	Acephate 4oz/ac	
Harvest aid	10/9/2012	Prep 32 oz/ac	
	10/9/2012	E.T. $2 \mathrm{oz} / \mathrm{ac}$	
	10/17/2012	Firestorm $24 \mathrm{oz} / \mathrm{ac}$	
	10/17/2012	LI 700 1oz/ac	
Irrigation Amt.			
PrePlant \& Planting	4/25-5/29	7.29in.	
Seasonal	7/6-9/5	Trt. 16.93 in.;Trt. 26.93 in.	
	7/6-9/5	Trt. $4 \quad 12.65$ in.; Trt. 512.65 in.	
	7/6-9/5	Trt. 36.43 in.	
	7/6-9/5	Trt. $6 \quad 12.83$ in.	
Rainfall			
PrePlant \& Planting Seasonal	1/25-5/22	3.31in.	
	6/3-9/13	9.31 in .	

Operations Summary

Operations Summary

Operations Summary

Operations Summary

Operations Summary

Operations Summary

Year	2012	
Farm	Helm	
Field ID	Field 10	
Exp. Design		
Soil Type		
	Date	Activity
Tillage	11/29/2011	Shredder
	1/24/2012	Row Stalker
	2/29/2012	Lister on 60" spacing
	3/12/2012	Roller \& Bed Conditioners
	5/1/2012	Roller \& Bed Conditioners
	5/25/2012	Rotary Hoe
	6/9/2012	Rotary Hoe
	6/15/2012	Rotary Hoe
	6/17/2012	Rotary Hoe
	6/18/2012	Rotary Hoe
	7/6/2012	Cultivate \& Dike
Fertility	11/29/2011	$19 \mathrm{lbs} \mathrm{N/ac} \mathrm{+} 60 \mathrm{lbs} \mathrm{P/ac} \mathrm{(} \mathrm{10-34-0} \mathrm{applied} \mathrm{thru} \mathrm{coulter} \mathrm{rig} \mathrm{)}$
	6/12/2012	100 lbs N/ac (32-0-0 applied thru coulter rig)
Planting	5/17/2012	Fibermax 9180 B2F at 56,144 seed/ac
Herbicide/Growth Regulator	3/12/2012	Trifluralin $1 \mathrm{qt} / \mathrm{ac}$
	3/13/2012	Gly-Star Gold $32 \mathrm{oz} / \mathrm{ac}$
	4/25/2012	Cornerstone Plus $32 \mathrm{oz} / \mathrm{ac}$
	4/25/2012	Aim 1 oz/ac
	5/18/2012	Caparol $3 \mathrm{pt} / \mathrm{ac}$
	5/18/2012	Roundup $32 \mathrm{oz} / \mathrm{ac}$
	6/2/2012	Roundup Powermax 32 oz/ac
	6/20/2012	Mad Dog $32 \mathrm{oz} / \mathrm{ac}$
	6/20/2012	Acephate 4 oz/ac
	7/17/2012	Mad Dog 32 oz/ac
Insecticide	6/20/2012	Acephate $4 \mathrm{oz} / \mathrm{ac}$
		Acephate $4 \mathrm{oz} / \mathrm{ac}$
Harvest aid	10/9/2012	Prep 32 oz/ac
	10/9/2012	E.T. 2 oz/ac
	10/17/2012	Firestorm $24 \mathrm{oz} / \mathrm{ac}$
	10/17/2012	LI 7001 oz/ac
Irrigation Amt.		
PrePlant \& Planting Seasonal	4/30-5/9	6.22 in.
	7/8-8/28	9.31 in.
Rainfall		
PrePlant \& Planting	1/25-5/22	3.31in.
Seasonal	6/3-9/13	9.31 in .

[^0]: * 2012 yield, SIWUE, and total irrigation use efficiency were significantly higher for the traditional versus the skip-row treatments (p<.05, Tukey).

