1. Uses and Benefits of Guar as a Crop
2. History of Guar Varieties in the U. S.
3. Breeding Objectives
4. Breeding Approach
1. Guar Cultivation

- Uses of Guar
- Guar as a Crop
Uses of Guar

- Gum - galactomannan
 - food thickening agent – ice cream, yogurt, sauces, cheese
 - Industrial - paper, pharmaceuticals, cosmetics
 - Hydraulic fracturing in oil extraction
- Forage crop
- Immature pods as source of food for human consumption
- Rotational Crop
Guar as a Crop

- Annual row crop
- Enriches soil - nitrogen fixing?
- Adapted to mechanical planting, cultivation and harvesting
- Product expands industrial non-food use market
- Adapted to water-limited environments
- Low input costs
2. Guar Varieties in the U.S.

- Early History
- Varieties Released the Past 50 Years
Early History of Guar in the U.S.

1906 - Introduced from India
- initially for forage, later tried for gum production
- irrigated production tried in AZ, NM, unprofitable
- low yields, late maturity (120-145 d), need for irrigation (2 acre-feet?), undeveloped markets

World War II- renewed interest for gum
- irrigated production in NM, AZ
- experiment station yields 1,200-2,600 lbs./acre
- contracted acreage payments
- dryland production tested outside San Antonio
- new varieties with higher yield, branched stalk, or earlier maturity
Earliest Varieties

<table>
<thead>
<tr>
<th>Texsel</th>
<th>Mesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-branching</td>
<td>branching</td>
</tr>
<tr>
<td>set seed mid-summer</td>
<td>late flowering</td>
</tr>
<tr>
<td>matured 1 month earlier</td>
<td>late maturing, pods slow to dry out</td>
</tr>
<tr>
<td>lower yield potential</td>
<td>higher yield potential</td>
</tr>
<tr>
<td>first pods set low to ground</td>
<td>first pods higher off ground</td>
</tr>
</tbody>
</table>

Source: R. L. Matlock and D. C. Aepli, Growth and Diseases of Guar (1948), Arizona AES Bulletin #216
History (continued)

• Post - WWII
 • Reduction in acreage in AZ, NM
 • loss of crop guarantees, loss of industrial outlets
 • Dryland production demonstrated in TX and OK
 • SE TX, summer legume following flax
 • processing plant in Kenedy (SE of San Antonio)
 • delayed rain --> poor germ, fall rains --> delayed harvest --> blackened seed NG for gum
 • NW TX (Vernon), SW OK, dryland
 • good match for rainfall and soil type
 • rotation with cotton increases cotton yields
 • yields 500-1000 lb/ac
Varieties Released in Past 50 Years

<table>
<thead>
<tr>
<th>Name</th>
<th>Released</th>
<th>Developers</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooks</td>
<td>1964</td>
<td>Stafford, Kinman, Brooks, Lewis</td>
<td>USDA, TAES, OAES</td>
</tr>
<tr>
<td>Hall</td>
<td>1966</td>
<td>Stafford, Kinman, Brooks, Lewis</td>
<td>USDA, TAES, OAES</td>
</tr>
<tr>
<td>Mills</td>
<td>1966</td>
<td>Stafford, Kinman, Brooks, Lewis</td>
<td>USDA, TAES, OAES</td>
</tr>
<tr>
<td>Kinman</td>
<td>1975</td>
<td>Stafford, Kirby, Kinman, Lewis</td>
<td>TAES, USDA, OAES</td>
</tr>
<tr>
<td>Esser</td>
<td>1975</td>
<td>Stafford, Kirby, Kinman, Lewis</td>
<td>TAES, USDA, OAES</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>1984</td>
<td>Ray, Stafford</td>
<td>UAz, USDA</td>
</tr>
<tr>
<td>Lewis</td>
<td>1984</td>
<td>Stafford, Ray</td>
<td>TAES, UAz</td>
</tr>
<tr>
<td>Matador</td>
<td>2004</td>
<td>Peffley, Auld, Norman</td>
<td>TTU, Halliburton</td>
</tr>
<tr>
<td>Monument</td>
<td>2004</td>
<td>Peffley, Auld, Norman</td>
<td>TTU, Halliburton</td>
</tr>
</tbody>
</table>
Themes in Varietal Development (Older Varieties)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Disease</th>
<th>Yield, acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooks</td>
<td>branching, lower pods higher above ground</td>
<td>bacterial blight & Alternaria leaf spot resistant; later susceptible to bacterial blight</td>
<td>43% higher yield than Texsel Groehler, grown on >95% of U.S. acreage in 1970s</td>
</tr>
<tr>
<td>Hall</td>
<td>branching, tall, late</td>
<td>bacterial blight & Alternaria leaf spot resistant</td>
<td>single plant selection from PI</td>
</tr>
<tr>
<td>Mills</td>
<td>branching, short, early</td>
<td>bacterial blight & Alternaria leaf spot resistant</td>
<td>single plant selection from PI</td>
</tr>
<tr>
<td>Kinman</td>
<td>branching, medium-tall, medium maturity</td>
<td>moderate resistance to bacterial blight; later said susceptible</td>
<td>Brooks x Mills; yield 20% greater than Brooks, 95% of AZ acreage</td>
</tr>
<tr>
<td>Esser</td>
<td>medium height, limited branching, medium maturity</td>
<td>bacterial blight resistant</td>
<td></td>
</tr>
</tbody>
</table>
Themes in Varietal Development (Newer Varieties)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Traits</th>
<th>Yield, acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis</td>
<td>branching, medium height & maturity, sequential flowering</td>
<td>bacterial blight resistant similar to Esser & Hall, more resistant than Brooks or Kinman</td>
<td>21-25% greater yield than Kinman and Esser</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>sparse branching, late maturing</td>
<td>yields better at high elevation, low temperature & higher rainfall</td>
<td></td>
</tr>
<tr>
<td>Matador</td>
<td>branching (130 d)</td>
<td>MR Alternaria leaf spot</td>
<td>35% gum</td>
</tr>
<tr>
<td>Monument</td>
<td>single stem, early (85 d)</td>
<td>Susceptible to Alternaria</td>
<td>39% gum</td>
</tr>
</tbody>
</table>
Appearance at Harvest

Mills Hall Santa Cruz Monument
3. Breeding Objectives

- Field Traits
 - Plant growth habit
 - Maturity
 - Yield
- Seed traits
 - Larger seed size
 - Gum content
- Disease resistance
- Potential for other markets
Field Traits

• Yield
 • Genetic yield potential has not changed in past 30 years, but other crops’ yields have increased

• Growth Habit
 • Optimal branching habit depends on cropping system (ex: wheat vs. cotton rotation)
 • Associated with yield, maturity

• Maturity
 • Early maturity desired if used as catch crop (plant later in the cropping season after another crop fails)
Seed Traits

• Seed size
 • typically 3.0 - 3.4 g/100 seed
 • Larger seed associated with greater % gum recovery

• Seed composition
 • Embryo, 45%
 • Seed coat, 15%
 • Endosperm, 40% -- gum 28%

• Gum content
 • Genetic variability exists for gum content
 • different fractions
 • overall mannose: galactose ratio 1.6:1

Disease resistance

• Alternaria leaf spot (Alternaria brassicae)
 • occurs during cool, wet weather
 • Can be important in more humid areas of cultivation (OK, Eastern TX) than in West TX, NM, AZ

• Bacterial blight

• Others observed but not thought to be widespread
 • Texas root rot - Phymatotrichum omnivorum
 • Sclerotium rot - Sclerotium rolfsii
 • Fusarium root rot - Fusarium sp.
 • Black root rot - Rhizoctonia rolani
 • Mosaic virus
 • Powdery mildew - Oidiopsis taurica
Potential for Other Markets

• Forage
 • Forage Value - TTU trials (Source: K. Imel MS thesis)
 • dry matter 3200-4600 kg/ha
 • crude protein 18.6 - 20.8%
 • ADF 20.1 - 26.9%
 • NDF 27.3 - 32.4%
 • Good dairy hay
 • 21-22% Crude protein (CP), <28% Acid detergent fiber (ADF), <35% Neutral detergent fiber (NDF)
 • Additional forage data, contact Dr. Alex Rocatelli, Oklahoma State Univ., alex.rocateli@okstate.edu

• Fresh vegetable
 • Eaten as fried green pods in India and Pakistan
 • Longer pods desirable – present in some PIs
 • Resistance to disease
4. Breeding Approach

- Evaluation of Texas Tech advanced and intermediate populations
- Other germplasm as potential sources of needed traits
- DNA markers
- Development of new populations for evaluation
Texas Tech Breeding Lines

• Populations:
 • Advanced population - 18 breeding lines
 • Intermediate Population - 48 breeding lines

• Traits:
 • Yield, seed size
 • Plant architecture, maturity
 • Disease resistance
 • Potential for forage, gum
Evaluation of other accessions

- **Plant Introductions**
 - PI station has 1458 *Cyamopsis* accessions
 - Materials being evaluated - 72 Plant Introductions, ca. 65 from diversity studied of J. Morris Genet Resour Crop Evol (2010) 57:985–993 in GA

- **Observation samples from TTU breeding program**
 - 131 lines being evaluated in field

- **Traits** - Yield, Plant Ht., Growth Habit, Pod length, Maturity, 100 Sd. Wt
Marker-Assisted Breeding

- Very little molecular data on guar – 1 EST, 1 RAPD, 1 AFLP paper
- Goals are
 - Develop DNA marker map
 - Identify markers (QTLs) for traits in segregating populations
- In peanut, have found markers associated with tolerance to water deficit stress
Summary

• Improved varieties increased yield of guar from the accessions originally introduced into the US, but yield remain at levels of 30 years ago
• Improvements in disease resistance have been also associated with yield increase
• Plant type is associated with yield, maturity, and efficiency in harvesting
• Genetic variability exists for these and other traits
• The AgriLife and TTU breeding program is evaluating existing populations with the goal of releasing improved varieties
• Germplasm evaluation is expected to identify potential parents
• Molecular analysis can accelerate breeding efforts